Upper Bounds for the Lengths of $s$-Extremal Codes Over $BBF_{2}$, $BBF_{4}$, and $BBF_{2} + uBBF_{2}

Our purpose is to find an upper bound for the length of an $s$-extremal code over ${BBF }_{2}$ (resp. ${BBF}_{4}$) when $d equiv 2!!!pmod {4}$ (resp. $d$ odd). This question is left open in [A bound for certain $s$-extremal lattices and codes, Archiv der Mathematik, vol. 89, no.2, pp. 143-151, 2007]...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2008-01, Vol.54 (1), p.418
Hauptverfasser: Han, S, Kim, J-L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 418
container_title IEEE transactions on information theory
container_volume 54
creator Han, S
Kim, J-L
description Our purpose is to find an upper bound for the length of an $s$-extremal code over ${BBF }_{2}$ (resp. ${BBF}_{4}$) when $d equiv 2!!!pmod {4}$ (resp. $d$ odd). This question is left open in [A bound for certain $s$-extremal lattices and codes, Archiv der Mathematik, vol. 89, no.2, pp. 143-151, 2007] (resp. [$s$-extremal additive $BBF _{4}$ codes, Advances in Mathematics of Communications, vol. 1, no. 1, pp. 111-130,2007]). More precisely, we show that if there is an $[n, {{ n}over { 2}}, d]~s$-extremal Type I binary self-dual code with $d>6$ and $dequiv 2!!! pmod {4}$, then $n ... 21d-82$. Similarly we show that if there is an $(n, 2...{n}, d)~s$-extremal Type I additive self-dual code over $BBF _{4}$ with $d>1$ and $d equiv 1 pmod {2}$, then $n ... 13d-26$. We also define $s$-extremal self-dual codes over ${BBF}_{2} + u {BBF}_{2}$ and derive an upper bound for the length of an $s$-extremal self-dual code over ${BBF}_{2} + u {BBF}_{2}$ using the information on binary $s$-extremal codes. (ProQuest: ... denotes formulae/symbols omitted.)
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_195931092</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1412362811</sourcerecordid><originalsourceid>FETCH-proquest_journals_1959310923</originalsourceid><addsrcrecordid>eNqNi08LgjAchkcUZH--w4_YrQZOt3JXxegQdKmzCM5EbLNtRhB99wykc6f3eXned4Q8yvmOiC1nY-T5Po2IYCyaopm1dV8Zp4GH5KVtpYFYd6qwUGoDrpJwlOrqKgu6BGwxSZ_OyFveQKILaeH06B84jvfZK3jjzYDsi7kqfgbW0A24QJMyb6xcDjlHq316Tg6kNfreSeuyWndG9SqjgouQ-iII_xp9AHiNQmk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195931092</pqid></control><display><type>article</type><title>Upper Bounds for the Lengths of $s$-Extremal Codes Over $BBF_{2}$, $BBF_{4}$, and $BBF_{2} + uBBF_{2}</title><source>IEEE Electronic Library (IEL)</source><creator>Han, S ; Kim, J-L</creator><creatorcontrib>Han, S ; Kim, J-L</creatorcontrib><description>Our purpose is to find an upper bound for the length of an $s$-extremal code over ${BBF }_{2}$ (resp. ${BBF}_{4}$) when $d equiv 2!!!pmod {4}$ (resp. $d$ odd). This question is left open in [A bound for certain $s$-extremal lattices and codes, Archiv der Mathematik, vol. 89, no.2, pp. 143-151, 2007] (resp. [$s$-extremal additive $BBF _{4}$ codes, Advances in Mathematics of Communications, vol. 1, no. 1, pp. 111-130,2007]). More precisely, we show that if there is an $[n, {{ n}over { 2}}, d]~s$-extremal Type I binary self-dual code with $d&gt;6$ and $dequiv 2!!! pmod {4}$, then $n ... 21d-82$. Similarly we show that if there is an $(n, 2...{n}, d)~s$-extremal Type I additive self-dual code over $BBF _{4}$ with $d&gt;1$ and $d equiv 1 pmod {2}$, then $n ... 13d-26$. We also define $s$-extremal self-dual codes over ${BBF}_{2} + u {BBF}_{2}$ and derive an upper bound for the length of an $s$-extremal self-dual code over ${BBF}_{2} + u {BBF}_{2}$ using the information on binary $s$-extremal codes. (ProQuest: ... denotes formulae/symbols omitted.)</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</publisher><subject>Binary system ; Codes ; Information ; Mathematical problems</subject><ispartof>IEEE transactions on information theory, 2008-01, Vol.54 (1), p.418</ispartof><rights>Copyright Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780</link.rule.ids></links><search><creatorcontrib>Han, S</creatorcontrib><creatorcontrib>Kim, J-L</creatorcontrib><title>Upper Bounds for the Lengths of $s$-Extremal Codes Over $BBF_{2}$, $BBF_{4}$, and $BBF_{2} + uBBF_{2}</title><title>IEEE transactions on information theory</title><description>Our purpose is to find an upper bound for the length of an $s$-extremal code over ${BBF }_{2}$ (resp. ${BBF}_{4}$) when $d equiv 2!!!pmod {4}$ (resp. $d$ odd). This question is left open in [A bound for certain $s$-extremal lattices and codes, Archiv der Mathematik, vol. 89, no.2, pp. 143-151, 2007] (resp. [$s$-extremal additive $BBF _{4}$ codes, Advances in Mathematics of Communications, vol. 1, no. 1, pp. 111-130,2007]). More precisely, we show that if there is an $[n, {{ n}over { 2}}, d]~s$-extremal Type I binary self-dual code with $d&gt;6$ and $dequiv 2!!! pmod {4}$, then $n ... 21d-82$. Similarly we show that if there is an $(n, 2...{n}, d)~s$-extremal Type I additive self-dual code over $BBF _{4}$ with $d&gt;1$ and $d equiv 1 pmod {2}$, then $n ... 13d-26$. We also define $s$-extremal self-dual codes over ${BBF}_{2} + u {BBF}_{2}$ and derive an upper bound for the length of an $s$-extremal self-dual code over ${BBF}_{2} + u {BBF}_{2}$ using the information on binary $s$-extremal codes. (ProQuest: ... denotes formulae/symbols omitted.)</description><subject>Binary system</subject><subject>Codes</subject><subject>Information</subject><subject>Mathematical problems</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqNi08LgjAchkcUZH--w4_YrQZOt3JXxegQdKmzCM5EbLNtRhB99wykc6f3eXned4Q8yvmOiC1nY-T5Po2IYCyaopm1dV8Zp4GH5KVtpYFYd6qwUGoDrpJwlOrqKgu6BGwxSZ_OyFveQKILaeH06B84jvfZK3jjzYDsi7kqfgbW0A24QJMyb6xcDjlHq316Tg6kNfreSeuyWndG9SqjgouQ-iII_xp9AHiNQmk</recordid><startdate>20080101</startdate><enddate>20080101</enddate><creator>Han, S</creator><creator>Kim, J-L</creator><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20080101</creationdate><title>Upper Bounds for the Lengths of $s$-Extremal Codes Over $BBF_{2}$, $BBF_{4}$, and $BBF_{2} + uBBF_{2}</title><author>Han, S ; Kim, J-L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_1959310923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Binary system</topic><topic>Codes</topic><topic>Information</topic><topic>Mathematical problems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, S</creatorcontrib><creatorcontrib>Kim, J-L</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, S</au><au>Kim, J-L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Upper Bounds for the Lengths of $s$-Extremal Codes Over $BBF_{2}$, $BBF_{4}$, and $BBF_{2} + uBBF_{2}</atitle><jtitle>IEEE transactions on information theory</jtitle><date>2008-01-01</date><risdate>2008</risdate><volume>54</volume><issue>1</issue><spage>418</spage><pages>418-</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>Our purpose is to find an upper bound for the length of an $s$-extremal code over ${BBF }_{2}$ (resp. ${BBF}_{4}$) when $d equiv 2!!!pmod {4}$ (resp. $d$ odd). This question is left open in [A bound for certain $s$-extremal lattices and codes, Archiv der Mathematik, vol. 89, no.2, pp. 143-151, 2007] (resp. [$s$-extremal additive $BBF _{4}$ codes, Advances in Mathematics of Communications, vol. 1, no. 1, pp. 111-130,2007]). More precisely, we show that if there is an $[n, {{ n}over { 2}}, d]~s$-extremal Type I binary self-dual code with $d&gt;6$ and $dequiv 2!!! pmod {4}$, then $n ... 21d-82$. Similarly we show that if there is an $(n, 2...{n}, d)~s$-extremal Type I additive self-dual code over $BBF _{4}$ with $d&gt;1$ and $d equiv 1 pmod {2}$, then $n ... 13d-26$. We also define $s$-extremal self-dual codes over ${BBF}_{2} + u {BBF}_{2}$ and derive an upper bound for the length of an $s$-extremal self-dual code over ${BBF}_{2} + u {BBF}_{2}$ using the information on binary $s$-extremal codes. (ProQuest: ... denotes formulae/symbols omitted.)</abstract><cop>New York</cop><pub>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</pub></addata></record>
fulltext fulltext
identifier ISSN: 0018-9448
ispartof IEEE transactions on information theory, 2008-01, Vol.54 (1), p.418
issn 0018-9448
1557-9654
language eng
recordid cdi_proquest_journals_195931092
source IEEE Electronic Library (IEL)
subjects Binary system
Codes
Information
Mathematical problems
title Upper Bounds for the Lengths of $s$-Extremal Codes Over $BBF_{2}$, $BBF_{4}$, and $BBF_{2} + uBBF_{2}
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T16%3A29%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Upper%20Bounds%20for%20the%20Lengths%20of%20$s$-Extremal%20Codes%20Over%20$BBF_%7B2%7D$,%20$BBF_%7B4%7D$,%20and%20$BBF_%7B2%7D%20+%20uBBF_%7B2%7D&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Han,%20S&rft.date=2008-01-01&rft.volume=54&rft.issue=1&rft.spage=418&rft.pages=418-&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/&rft_dat=%3Cproquest%3E1412362811%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=195931092&rft_id=info:pmid/&rfr_iscdi=true