Unidirectional covering codes

A code C/spl sube/Z/sup n//sub 2/, where Z/sub 2/={0,1}, has unidirectional covering radius R if R is the smallest integer so that any word in Z/sup n//sub 2/ can be obtained from at least one codeword c/spl isin/C by replacing either 1s by 0s in at most R coordinates or 0s by 1s in at most R coordi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2006-01, Vol.52 (1), p.336-340
Hauptverfasser: Ostergard, P.R.J., Seuranen, E.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 340
container_issue 1
container_start_page 336
container_title IEEE transactions on information theory
container_volume 52
creator Ostergard, P.R.J.
Seuranen, E.A.
description A code C/spl sube/Z/sup n//sub 2/, where Z/sub 2/={0,1}, has unidirectional covering radius R if R is the smallest integer so that any word in Z/sup n//sub 2/ can be obtained from at least one codeword c/spl isin/C by replacing either 1s by 0s in at most R coordinates or 0s by 1s in at most R coordinates. The minimum cardinality of such a code is denoted by E(n,R). Upper bounds on this function are here obtained by constructing codes using tabu search; lower bounds, on the other hand, are mainly obtained by integer programming and exhaustive search. Best known bounds on E(n,R) for n/spl les/13 and R/spl les/6 are tabulated.
doi_str_mv 10.1109/TIT.2005.860449
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_195915188</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1564451</ieee_id><sourcerecordid>28051915</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-9929495a60ebb759604a1e08c26e05665f19375c5cfd1898c8a81c5db390febe3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKtnDyKIoHjZNtnNZJOjFD8KBS_tOWSzs5Ky3a1JK_jvndJCwYOnTJhnXmYexq4FHwnBzXg-nY9yzmGkFZfSnLCBACgzo0CesgHnQmdGSn3OLlJa0leCyAfsdtGFOkT0m9B3rr3z_TfG0H1SUWO6ZGeNaxNeHd4hW7y-zCfv2ezjbTp5nmW-0PkmMyY30oBTHKuqBEMLOIFc-1whB6WgEaYowYNvaqGN9tpp4aGuCsMbrLAYssd97jr2X1tMG7sKyWPbug77bbK55iCMAAKf_gVFoYDO5nlJ6P0fdNlvI91IlAEKE1oTNN5DPvYpRWzsOoaViz9WcLvTakmr3Wm1e6008XCIdcm7tomu8yEdx8qi1BRN3M2eC4h4bIOSJL74BbAofTE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195915188</pqid></control><display><type>article</type><title>Unidirectional covering codes</title><source>IEEE Electronic Library (IEL)</source><creator>Ostergard, P.R.J. ; Seuranen, E.A.</creator><creatorcontrib>Ostergard, P.R.J. ; Seuranen, E.A.</creatorcontrib><description>A code C/spl sube/Z/sup n//sub 2/, where Z/sub 2/={0,1}, has unidirectional covering radius R if R is the smallest integer so that any word in Z/sup n//sub 2/ can be obtained from at least one codeword c/spl isin/C by replacing either 1s by 0s in at most R coordinates or 0s by 1s in at most R coordinates. The minimum cardinality of such a code is denoted by E(n,R). Upper bounds on this function are here obtained by constructing codes using tabu search; lower bounds, on the other hand, are mainly obtained by integer programming and exhaustive search. Best known bounds on E(n,R) for n/spl les/13 and R/spl les/6 are tabulated.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2005.860449</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Codes ; Coding, codes ; Construction ; Covering ; Covering codes ; Data compression ; Error correction codes ; Exact sciences and technology ; Information theory ; Information, signal and communications theory ; Integer programming ; Linear programming ; Lower bounds ; Mathematical models ; Searching ; Signal and communications theory ; Tabu search ; Telecommunications and information theory ; unidirectional codes ; Upper bound ; Upper bounds</subject><ispartof>IEEE transactions on information theory, 2006-01, Vol.52 (1), p.336-340</ispartof><rights>2006 INIST-CNRS</rights><rights>Copyright Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-9929495a60ebb759604a1e08c26e05665f19375c5cfd1898c8a81c5db390febe3</citedby><cites>FETCH-LOGICAL-c382t-9929495a60ebb759604a1e08c26e05665f19375c5cfd1898c8a81c5db390febe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1564451$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1564451$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17378518$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ostergard, P.R.J.</creatorcontrib><creatorcontrib>Seuranen, E.A.</creatorcontrib><title>Unidirectional covering codes</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>A code C/spl sube/Z/sup n//sub 2/, where Z/sub 2/={0,1}, has unidirectional covering radius R if R is the smallest integer so that any word in Z/sup n//sub 2/ can be obtained from at least one codeword c/spl isin/C by replacing either 1s by 0s in at most R coordinates or 0s by 1s in at most R coordinates. The minimum cardinality of such a code is denoted by E(n,R). Upper bounds on this function are here obtained by constructing codes using tabu search; lower bounds, on the other hand, are mainly obtained by integer programming and exhaustive search. Best known bounds on E(n,R) for n/spl les/13 and R/spl les/6 are tabulated.</description><subject>Applied sciences</subject><subject>Codes</subject><subject>Coding, codes</subject><subject>Construction</subject><subject>Covering</subject><subject>Covering codes</subject><subject>Data compression</subject><subject>Error correction codes</subject><subject>Exact sciences and technology</subject><subject>Information theory</subject><subject>Information, signal and communications theory</subject><subject>Integer programming</subject><subject>Linear programming</subject><subject>Lower bounds</subject><subject>Mathematical models</subject><subject>Searching</subject><subject>Signal and communications theory</subject><subject>Tabu search</subject><subject>Telecommunications and information theory</subject><subject>unidirectional codes</subject><subject>Upper bound</subject><subject>Upper bounds</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kE1LAzEQhoMoWKtnDyKIoHjZNtnNZJOjFD8KBS_tOWSzs5Ky3a1JK_jvndJCwYOnTJhnXmYexq4FHwnBzXg-nY9yzmGkFZfSnLCBACgzo0CesgHnQmdGSn3OLlJa0leCyAfsdtGFOkT0m9B3rr3z_TfG0H1SUWO6ZGeNaxNeHd4hW7y-zCfv2ezjbTp5nmW-0PkmMyY30oBTHKuqBEMLOIFc-1whB6WgEaYowYNvaqGN9tpp4aGuCsMbrLAYssd97jr2X1tMG7sKyWPbug77bbK55iCMAAKf_gVFoYDO5nlJ6P0fdNlvI91IlAEKE1oTNN5DPvYpRWzsOoaViz9WcLvTakmr3Wm1e6008XCIdcm7tomu8yEdx8qi1BRN3M2eC4h4bIOSJL74BbAofTE</recordid><startdate>200601</startdate><enddate>200601</enddate><creator>Ostergard, P.R.J.</creator><creator>Seuranen, E.A.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>200601</creationdate><title>Unidirectional covering codes</title><author>Ostergard, P.R.J. ; Seuranen, E.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-9929495a60ebb759604a1e08c26e05665f19375c5cfd1898c8a81c5db390febe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Codes</topic><topic>Coding, codes</topic><topic>Construction</topic><topic>Covering</topic><topic>Covering codes</topic><topic>Data compression</topic><topic>Error correction codes</topic><topic>Exact sciences and technology</topic><topic>Information theory</topic><topic>Information, signal and communications theory</topic><topic>Integer programming</topic><topic>Linear programming</topic><topic>Lower bounds</topic><topic>Mathematical models</topic><topic>Searching</topic><topic>Signal and communications theory</topic><topic>Tabu search</topic><topic>Telecommunications and information theory</topic><topic>unidirectional codes</topic><topic>Upper bound</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ostergard, P.R.J.</creatorcontrib><creatorcontrib>Seuranen, E.A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ostergard, P.R.J.</au><au>Seuranen, E.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unidirectional covering codes</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2006-01</date><risdate>2006</risdate><volume>52</volume><issue>1</issue><spage>336</spage><epage>340</epage><pages>336-340</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>A code C/spl sube/Z/sup n//sub 2/, where Z/sub 2/={0,1}, has unidirectional covering radius R if R is the smallest integer so that any word in Z/sup n//sub 2/ can be obtained from at least one codeword c/spl isin/C by replacing either 1s by 0s in at most R coordinates or 0s by 1s in at most R coordinates. The minimum cardinality of such a code is denoted by E(n,R). Upper bounds on this function are here obtained by constructing codes using tabu search; lower bounds, on the other hand, are mainly obtained by integer programming and exhaustive search. Best known bounds on E(n,R) for n/spl les/13 and R/spl les/6 are tabulated.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TIT.2005.860449</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9448
ispartof IEEE transactions on information theory, 2006-01, Vol.52 (1), p.336-340
issn 0018-9448
1557-9654
language eng
recordid cdi_proquest_journals_195915188
source IEEE Electronic Library (IEL)
subjects Applied sciences
Codes
Coding, codes
Construction
Covering
Covering codes
Data compression
Error correction codes
Exact sciences and technology
Information theory
Information, signal and communications theory
Integer programming
Linear programming
Lower bounds
Mathematical models
Searching
Signal and communications theory
Tabu search
Telecommunications and information theory
unidirectional codes
Upper bound
Upper bounds
title Unidirectional covering codes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T06%3A48%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unidirectional%20covering%20codes&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Ostergard,%20P.R.J.&rft.date=2006-01&rft.volume=52&rft.issue=1&rft.spage=336&rft.epage=340&rft.pages=336-340&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2005.860449&rft_dat=%3Cproquest_RIE%3E28051915%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=195915188&rft_id=info:pmid/&rft_ieee_id=1564451&rfr_iscdi=true