Endocytic pathways involved in PLGA nanoparticle uptake by grapevine cells and role of cell wall and membrane in size selection
Key message PLGA NPs’ cell uptake involves different endocytic pathways. Clathrin-independent endocytosis is the main internalization route. The cell wall plays a more prominent role than the plasma membrane in NPs’ size selection. In the last years, many studies on absorption and cell uptake of nan...
Gespeichert in:
Veröffentlicht in: | Plant cell reports 2017-12, Vol.36 (12), p.1917-1928 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1928 |
---|---|
container_issue | 12 |
container_start_page | 1917 |
container_title | Plant cell reports |
container_volume | 36 |
creator | Palocci, Cleofe Valletta, Alessio Chronopoulou, Laura Donati, Livia Bramosanti, Marco Brasili, Elisa Baldan, Barbara Pasqua, Gabriella |
description | Key message
PLGA NPs’ cell uptake involves different endocytic pathways. Clathrin-independent endocytosis is the main internalization route. The cell wall plays a more prominent role than the plasma membrane in NPs’ size selection.
In the last years, many studies on absorption and cell uptake of nanoparticles by plants have been conducted, but the understanding of the internalization mechanisms is still largely unknown. In this study, polydispersed and monodispersed poly(lactic-co-glycolic) acid nanoparticles (PLGA NPs) were synthesized, and a strategy combining the use of transmission electron microscopy (TEM), confocal analysis, fluorescently labeled PLGA NPs, a probe for endocytic vesicles (FM4-64), and endocytosis inhibitors (i.e., wortmannin, ikarugamycin, and salicylic acid) was employed to shed light on PLGA NP cell uptake in grapevine cultured cells and to assess the role of the cell wall and plasma membrane in size selection of PLGA NPs. The ability of PLGA NPs to cross the cell wall and membrane was confirmed by TEM and fluorescence microscopy. A strong adhesion of PLGA NPs to the outer side of the cell wall was observed, presumably due to electrostatic interactions. Confocal microscopy and treatment with endocytosis inhibitors suggested the involvement of both clathrin-dependent and clathrin-independent endocytosis in cell uptake of PLGA NPs and the latter appeared to be the main internalization pathway. Experiments on grapevine protoplasts revealed that the cell wall plays a more prominent role than the plasma membrane in size selection of PLGA NPs. While the cell wall prevents the uptake of PLGA NPs with diameters over 50 nm, the plasma membrane can be crossed by PLGA NPs with a diameter of 500–600 nm. |
doi_str_mv | 10.1007/s00299-017-2206-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1959137334</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1959137334</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-bb3554dc562583734e706fb2e5c079afcb9f8caf32b64900e917d6845e5f60733</originalsourceid><addsrcrecordid>eNp1kLFOwzAQhi0EoqXwACzIEnPgbCdxM1YIClIlGEBisxznAoHUDnbaqiy8Oi4FxMLis-6--0_6CDlmcMYA5HkA4EWRAJMJ55AnsEOGLBU84SAed8kQJGeJlCwdkIMQXgDiUOb7ZMDHBRMS5JB8XNrKmXXfGNrp_nml14E2dunaJVbxQ-9m0wm12rpO-wi1SBddr1-Rlmv65HWHy8YiNdi2gWpbUe8i4uqvDl3p-Gy6c5yXXkcwJobmHWnAFk3fOHtI9mrdBjz6riPycHV5f3GdzG6nNxeTWWKE5H1SliLL0spkOc_GQooUJeR1yTEzIAtdm7Kox0bXgpd5WgBgwWSVj9MMszoHKcSInG5zO-_eFhh69eIW3saTihXZxoYQaaTYljLeheCxVp1v5tqvFQO1Ua62ylVUrjbKFcSdk-_kRTnH6nfjx3EE-BYIcWSf0P85_W_qJ0DKjLc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1959137334</pqid></control><display><type>article</type><title>Endocytic pathways involved in PLGA nanoparticle uptake by grapevine cells and role of cell wall and membrane in size selection</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Palocci, Cleofe ; Valletta, Alessio ; Chronopoulou, Laura ; Donati, Livia ; Bramosanti, Marco ; Brasili, Elisa ; Baldan, Barbara ; Pasqua, Gabriella</creator><creatorcontrib>Palocci, Cleofe ; Valletta, Alessio ; Chronopoulou, Laura ; Donati, Livia ; Bramosanti, Marco ; Brasili, Elisa ; Baldan, Barbara ; Pasqua, Gabriella</creatorcontrib><description>Key message
PLGA NPs’ cell uptake involves different endocytic pathways. Clathrin-independent endocytosis is the main internalization route. The cell wall plays a more prominent role than the plasma membrane in NPs’ size selection.
In the last years, many studies on absorption and cell uptake of nanoparticles by plants have been conducted, but the understanding of the internalization mechanisms is still largely unknown. In this study, polydispersed and monodispersed poly(lactic-co-glycolic) acid nanoparticles (PLGA NPs) were synthesized, and a strategy combining the use of transmission electron microscopy (TEM), confocal analysis, fluorescently labeled PLGA NPs, a probe for endocytic vesicles (FM4-64), and endocytosis inhibitors (i.e., wortmannin, ikarugamycin, and salicylic acid) was employed to shed light on PLGA NP cell uptake in grapevine cultured cells and to assess the role of the cell wall and plasma membrane in size selection of PLGA NPs. The ability of PLGA NPs to cross the cell wall and membrane was confirmed by TEM and fluorescence microscopy. A strong adhesion of PLGA NPs to the outer side of the cell wall was observed, presumably due to electrostatic interactions. Confocal microscopy and treatment with endocytosis inhibitors suggested the involvement of both clathrin-dependent and clathrin-independent endocytosis in cell uptake of PLGA NPs and the latter appeared to be the main internalization pathway. Experiments on grapevine protoplasts revealed that the cell wall plays a more prominent role than the plasma membrane in size selection of PLGA NPs. While the cell wall prevents the uptake of PLGA NPs with diameters over 50 nm, the plasma membrane can be crossed by PLGA NPs with a diameter of 500–600 nm.</description><identifier>ISSN: 0721-7714</identifier><identifier>EISSN: 1432-203X</identifier><identifier>DOI: 10.1007/s00299-017-2206-0</identifier><identifier>PMID: 28913707</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Adhesive strength ; Biomedical and Life Sciences ; Biotechnology ; Cell Biology ; Cell size ; Cell Wall - metabolism ; Cell walls ; Clathrin ; Confocal microscopy ; Electron microscopy ; Electrostatic properties ; Endocytosis ; Endocytosis - physiology ; Fluorescence ; Fluorescence microscopy ; Inhibitors ; Internalization ; Life Sciences ; Membranes ; Microfluidics ; Microscopy, Electron, Transmission ; Nanoparticles ; Nanoparticles - chemistry ; Nanoparticles - metabolism ; Nanoparticles - ultrastructure ; Original Article ; Plant Biochemistry ; Plant Sciences ; Plasma ; Plasmas (physics) ; Polylactide-co-glycolide ; Protoplasts ; Salicylic acid ; Transmission electron microscopy ; Vitis - metabolism ; Wortmannin</subject><ispartof>Plant cell reports, 2017-12, Vol.36 (12), p.1917-1928</ispartof><rights>Springer-Verlag GmbH Germany 2017</rights><rights>Plant Cell Reports is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-bb3554dc562583734e706fb2e5c079afcb9f8caf32b64900e917d6845e5f60733</citedby><cites>FETCH-LOGICAL-c372t-bb3554dc562583734e706fb2e5c079afcb9f8caf32b64900e917d6845e5f60733</cites><orcidid>0000-0002-8988-1400</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00299-017-2206-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00299-017-2206-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28913707$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Palocci, Cleofe</creatorcontrib><creatorcontrib>Valletta, Alessio</creatorcontrib><creatorcontrib>Chronopoulou, Laura</creatorcontrib><creatorcontrib>Donati, Livia</creatorcontrib><creatorcontrib>Bramosanti, Marco</creatorcontrib><creatorcontrib>Brasili, Elisa</creatorcontrib><creatorcontrib>Baldan, Barbara</creatorcontrib><creatorcontrib>Pasqua, Gabriella</creatorcontrib><title>Endocytic pathways involved in PLGA nanoparticle uptake by grapevine cells and role of cell wall and membrane in size selection</title><title>Plant cell reports</title><addtitle>Plant Cell Rep</addtitle><addtitle>Plant Cell Rep</addtitle><description>Key message
PLGA NPs’ cell uptake involves different endocytic pathways. Clathrin-independent endocytosis is the main internalization route. The cell wall plays a more prominent role than the plasma membrane in NPs’ size selection.
In the last years, many studies on absorption and cell uptake of nanoparticles by plants have been conducted, but the understanding of the internalization mechanisms is still largely unknown. In this study, polydispersed and monodispersed poly(lactic-co-glycolic) acid nanoparticles (PLGA NPs) were synthesized, and a strategy combining the use of transmission electron microscopy (TEM), confocal analysis, fluorescently labeled PLGA NPs, a probe for endocytic vesicles (FM4-64), and endocytosis inhibitors (i.e., wortmannin, ikarugamycin, and salicylic acid) was employed to shed light on PLGA NP cell uptake in grapevine cultured cells and to assess the role of the cell wall and plasma membrane in size selection of PLGA NPs. The ability of PLGA NPs to cross the cell wall and membrane was confirmed by TEM and fluorescence microscopy. A strong adhesion of PLGA NPs to the outer side of the cell wall was observed, presumably due to electrostatic interactions. Confocal microscopy and treatment with endocytosis inhibitors suggested the involvement of both clathrin-dependent and clathrin-independent endocytosis in cell uptake of PLGA NPs and the latter appeared to be the main internalization pathway. Experiments on grapevine protoplasts revealed that the cell wall plays a more prominent role than the plasma membrane in size selection of PLGA NPs. While the cell wall prevents the uptake of PLGA NPs with diameters over 50 nm, the plasma membrane can be crossed by PLGA NPs with a diameter of 500–600 nm.</description><subject>Adhesive strength</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Cell Biology</subject><subject>Cell size</subject><subject>Cell Wall - metabolism</subject><subject>Cell walls</subject><subject>Clathrin</subject><subject>Confocal microscopy</subject><subject>Electron microscopy</subject><subject>Electrostatic properties</subject><subject>Endocytosis</subject><subject>Endocytosis - physiology</subject><subject>Fluorescence</subject><subject>Fluorescence microscopy</subject><subject>Inhibitors</subject><subject>Internalization</subject><subject>Life Sciences</subject><subject>Membranes</subject><subject>Microfluidics</subject><subject>Microscopy, Electron, Transmission</subject><subject>Nanoparticles</subject><subject>Nanoparticles - chemistry</subject><subject>Nanoparticles - metabolism</subject><subject>Nanoparticles - ultrastructure</subject><subject>Original Article</subject><subject>Plant Biochemistry</subject><subject>Plant Sciences</subject><subject>Plasma</subject><subject>Plasmas (physics)</subject><subject>Polylactide-co-glycolide</subject><subject>Protoplasts</subject><subject>Salicylic acid</subject><subject>Transmission electron microscopy</subject><subject>Vitis - metabolism</subject><subject>Wortmannin</subject><issn>0721-7714</issn><issn>1432-203X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kLFOwzAQhi0EoqXwACzIEnPgbCdxM1YIClIlGEBisxznAoHUDnbaqiy8Oi4FxMLis-6--0_6CDlmcMYA5HkA4EWRAJMJ55AnsEOGLBU84SAed8kQJGeJlCwdkIMQXgDiUOb7ZMDHBRMS5JB8XNrKmXXfGNrp_nml14E2dunaJVbxQ-9m0wm12rpO-wi1SBddr1-Rlmv65HWHy8YiNdi2gWpbUe8i4uqvDl3p-Gy6c5yXXkcwJobmHWnAFk3fOHtI9mrdBjz6riPycHV5f3GdzG6nNxeTWWKE5H1SliLL0spkOc_GQooUJeR1yTEzIAtdm7Kox0bXgpd5WgBgwWSVj9MMszoHKcSInG5zO-_eFhh69eIW3saTihXZxoYQaaTYljLeheCxVp1v5tqvFQO1Ua62ylVUrjbKFcSdk-_kRTnH6nfjx3EE-BYIcWSf0P85_W_qJ0DKjLc</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Palocci, Cleofe</creator><creator>Valletta, Alessio</creator><creator>Chronopoulou, Laura</creator><creator>Donati, Livia</creator><creator>Bramosanti, Marco</creator><creator>Brasili, Elisa</creator><creator>Baldan, Barbara</creator><creator>Pasqua, Gabriella</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0002-8988-1400</orcidid></search><sort><creationdate>20171201</creationdate><title>Endocytic pathways involved in PLGA nanoparticle uptake by grapevine cells and role of cell wall and membrane in size selection</title><author>Palocci, Cleofe ; Valletta, Alessio ; Chronopoulou, Laura ; Donati, Livia ; Bramosanti, Marco ; Brasili, Elisa ; Baldan, Barbara ; Pasqua, Gabriella</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-bb3554dc562583734e706fb2e5c079afcb9f8caf32b64900e917d6845e5f60733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adhesive strength</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Cell Biology</topic><topic>Cell size</topic><topic>Cell Wall - metabolism</topic><topic>Cell walls</topic><topic>Clathrin</topic><topic>Confocal microscopy</topic><topic>Electron microscopy</topic><topic>Electrostatic properties</topic><topic>Endocytosis</topic><topic>Endocytosis - physiology</topic><topic>Fluorescence</topic><topic>Fluorescence microscopy</topic><topic>Inhibitors</topic><topic>Internalization</topic><topic>Life Sciences</topic><topic>Membranes</topic><topic>Microfluidics</topic><topic>Microscopy, Electron, Transmission</topic><topic>Nanoparticles</topic><topic>Nanoparticles - chemistry</topic><topic>Nanoparticles - metabolism</topic><topic>Nanoparticles - ultrastructure</topic><topic>Original Article</topic><topic>Plant Biochemistry</topic><topic>Plant Sciences</topic><topic>Plasma</topic><topic>Plasmas (physics)</topic><topic>Polylactide-co-glycolide</topic><topic>Protoplasts</topic><topic>Salicylic acid</topic><topic>Transmission electron microscopy</topic><topic>Vitis - metabolism</topic><topic>Wortmannin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Palocci, Cleofe</creatorcontrib><creatorcontrib>Valletta, Alessio</creatorcontrib><creatorcontrib>Chronopoulou, Laura</creatorcontrib><creatorcontrib>Donati, Livia</creatorcontrib><creatorcontrib>Bramosanti, Marco</creatorcontrib><creatorcontrib>Brasili, Elisa</creatorcontrib><creatorcontrib>Baldan, Barbara</creatorcontrib><creatorcontrib>Pasqua, Gabriella</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><jtitle>Plant cell reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Palocci, Cleofe</au><au>Valletta, Alessio</au><au>Chronopoulou, Laura</au><au>Donati, Livia</au><au>Bramosanti, Marco</au><au>Brasili, Elisa</au><au>Baldan, Barbara</au><au>Pasqua, Gabriella</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Endocytic pathways involved in PLGA nanoparticle uptake by grapevine cells and role of cell wall and membrane in size selection</atitle><jtitle>Plant cell reports</jtitle><stitle>Plant Cell Rep</stitle><addtitle>Plant Cell Rep</addtitle><date>2017-12-01</date><risdate>2017</risdate><volume>36</volume><issue>12</issue><spage>1917</spage><epage>1928</epage><pages>1917-1928</pages><issn>0721-7714</issn><eissn>1432-203X</eissn><abstract>Key message
PLGA NPs’ cell uptake involves different endocytic pathways. Clathrin-independent endocytosis is the main internalization route. The cell wall plays a more prominent role than the plasma membrane in NPs’ size selection.
In the last years, many studies on absorption and cell uptake of nanoparticles by plants have been conducted, but the understanding of the internalization mechanisms is still largely unknown. In this study, polydispersed and monodispersed poly(lactic-co-glycolic) acid nanoparticles (PLGA NPs) were synthesized, and a strategy combining the use of transmission electron microscopy (TEM), confocal analysis, fluorescently labeled PLGA NPs, a probe for endocytic vesicles (FM4-64), and endocytosis inhibitors (i.e., wortmannin, ikarugamycin, and salicylic acid) was employed to shed light on PLGA NP cell uptake in grapevine cultured cells and to assess the role of the cell wall and plasma membrane in size selection of PLGA NPs. The ability of PLGA NPs to cross the cell wall and membrane was confirmed by TEM and fluorescence microscopy. A strong adhesion of PLGA NPs to the outer side of the cell wall was observed, presumably due to electrostatic interactions. Confocal microscopy and treatment with endocytosis inhibitors suggested the involvement of both clathrin-dependent and clathrin-independent endocytosis in cell uptake of PLGA NPs and the latter appeared to be the main internalization pathway. Experiments on grapevine protoplasts revealed that the cell wall plays a more prominent role than the plasma membrane in size selection of PLGA NPs. While the cell wall prevents the uptake of PLGA NPs with diameters over 50 nm, the plasma membrane can be crossed by PLGA NPs with a diameter of 500–600 nm.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>28913707</pmid><doi>10.1007/s00299-017-2206-0</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-8988-1400</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0721-7714 |
ispartof | Plant cell reports, 2017-12, Vol.36 (12), p.1917-1928 |
issn | 0721-7714 1432-203X |
language | eng |
recordid | cdi_proquest_journals_1959137334 |
source | MEDLINE; Springer Nature - Complete Springer Journals |
subjects | Adhesive strength Biomedical and Life Sciences Biotechnology Cell Biology Cell size Cell Wall - metabolism Cell walls Clathrin Confocal microscopy Electron microscopy Electrostatic properties Endocytosis Endocytosis - physiology Fluorescence Fluorescence microscopy Inhibitors Internalization Life Sciences Membranes Microfluidics Microscopy, Electron, Transmission Nanoparticles Nanoparticles - chemistry Nanoparticles - metabolism Nanoparticles - ultrastructure Original Article Plant Biochemistry Plant Sciences Plasma Plasmas (physics) Polylactide-co-glycolide Protoplasts Salicylic acid Transmission electron microscopy Vitis - metabolism Wortmannin |
title | Endocytic pathways involved in PLGA nanoparticle uptake by grapevine cells and role of cell wall and membrane in size selection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T04%3A07%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Endocytic%20pathways%20involved%20in%20PLGA%20nanoparticle%20uptake%20by%20grapevine%20cells%20and%20role%20of%20cell%20wall%20and%20membrane%20in%20size%20selection&rft.jtitle=Plant%20cell%20reports&rft.au=Palocci,%20Cleofe&rft.date=2017-12-01&rft.volume=36&rft.issue=12&rft.spage=1917&rft.epage=1928&rft.pages=1917-1928&rft.issn=0721-7714&rft.eissn=1432-203X&rft_id=info:doi/10.1007/s00299-017-2206-0&rft_dat=%3Cproquest_cross%3E1959137334%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1959137334&rft_id=info:pmid/28913707&rfr_iscdi=true |