Mean-squared error and threshold SNR prediction of maximum-likelihood signal parameter estimation with estimated colored noise covarlances
An interval error-based method (MIE) of predicting mean squared error (MSE) performance of maximum-likelihood estimators (MLEs) is extended to the case of signal parameter estimation requiring intermediate estimation of an unknown colored noise covariance matrix; an intermediate step central to adap...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 2006-05, Vol.52 (5), p.2146 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | 2146 |
container_title | IEEE transactions on information theory |
container_volume | 52 |
creator | Richmond, C D |
description | An interval error-based method (MIE) of predicting mean squared error (MSE) performance of maximum-likelihood estimators (MLEs) is extended to the case of signal parameter estimation requiring intermediate estimation of an unknown colored noise covariance matrix; an intermediate step central to adaptive array detection and parameter estimation. The successful application of MIE requires good approximations of two quantities: 1) interval error probabilities and 2) asymptotic (SNR/spl rarr//spl infin/) local MSE performance of the MLE. Exact general expressions for the pairwise error probabilities that include the effects of signal model mismatch are derived herein, that in conjunction with the Union Bound provide accurate prediction of the required interval error probabilities. The Crame/spl acute/r-Rao Bound (CRB) often provides adequate prediction of the asymptotic local MSE performance of MLE. The signal parameters, however, are decoupled from the colored noise parameters in the Fisher Information Matrix for the deterministic signal model, rendering the CRB incapable of reflecting loss due to colored noise covariance estimation. A new modification of the CRB involving a complex central beta random variable different from, but analogous to the Reed, Mallett, and Brennan beta loss factor provides a working solution to this problem, facilitating MSE prediction well into the threshold region with remarkable accuracy. [PUBLICATION ABSTRACT] |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_195912650</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1048758381</sourcerecordid><originalsourceid>FETCH-proquest_journals_1959126503</originalsourceid><addsrcrecordid>eNqNjUFOwzAQRS0EEoFyhxH7SHGJS7NGIDawAPbVKJk2LrYnnXGAM3BqDII9q9HT_P_fkamsc9d1t3Ltsamaxq7rrm3Xp-ZMdV-wdXZZmc8HwlTrYUahAUiEBTANkEchHTkM8Pz4BFN5-j57TsBbiPjh4xzr4F8p-JF5APW7hAEmFIyUSYA0-4g_jXefxz8ujp4Df7sSe6VCbygBU0-6MCdbDEoXv_fcXN7dvtzc15PwYS4Dmz3PUjS6sZ3r7HLlmqt_hb4AEaNWxg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195912650</pqid></control><display><type>article</type><title>Mean-squared error and threshold SNR prediction of maximum-likelihood signal parameter estimation with estimated colored noise covarlances</title><source>IEEE Electronic Library (IEL)</source><creator>Richmond, C D</creator><creatorcontrib>Richmond, C D</creatorcontrib><description>An interval error-based method (MIE) of predicting mean squared error (MSE) performance of maximum-likelihood estimators (MLEs) is extended to the case of signal parameter estimation requiring intermediate estimation of an unknown colored noise covariance matrix; an intermediate step central to adaptive array detection and parameter estimation. The successful application of MIE requires good approximations of two quantities: 1) interval error probabilities and 2) asymptotic (SNR/spl rarr//spl infin/) local MSE performance of the MLE. Exact general expressions for the pairwise error probabilities that include the effects of signal model mismatch are derived herein, that in conjunction with the Union Bound provide accurate prediction of the required interval error probabilities. The Crame/spl acute/r-Rao Bound (CRB) often provides adequate prediction of the asymptotic local MSE performance of MLE. The signal parameters, however, are decoupled from the colored noise parameters in the Fisher Information Matrix for the deterministic signal model, rendering the CRB incapable of reflecting loss due to colored noise covariance estimation. A new modification of the CRB involving a complex central beta random variable different from, but analogous to the Reed, Mallett, and Brennan beta loss factor provides a working solution to this problem, facilitating MSE prediction well into the threshold region with remarkable accuracy. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</publisher><subject>Errors ; Estimating techniques ; Information systems ; Predictions ; Probability ; Theory</subject><ispartof>IEEE transactions on information theory, 2006-05, Vol.52 (5), p.2146</ispartof><rights>Copyright Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780</link.rule.ids></links><search><creatorcontrib>Richmond, C D</creatorcontrib><title>Mean-squared error and threshold SNR prediction of maximum-likelihood signal parameter estimation with estimated colored noise covarlances</title><title>IEEE transactions on information theory</title><description>An interval error-based method (MIE) of predicting mean squared error (MSE) performance of maximum-likelihood estimators (MLEs) is extended to the case of signal parameter estimation requiring intermediate estimation of an unknown colored noise covariance matrix; an intermediate step central to adaptive array detection and parameter estimation. The successful application of MIE requires good approximations of two quantities: 1) interval error probabilities and 2) asymptotic (SNR/spl rarr//spl infin/) local MSE performance of the MLE. Exact general expressions for the pairwise error probabilities that include the effects of signal model mismatch are derived herein, that in conjunction with the Union Bound provide accurate prediction of the required interval error probabilities. The Crame/spl acute/r-Rao Bound (CRB) often provides adequate prediction of the asymptotic local MSE performance of MLE. The signal parameters, however, are decoupled from the colored noise parameters in the Fisher Information Matrix for the deterministic signal model, rendering the CRB incapable of reflecting loss due to colored noise covariance estimation. A new modification of the CRB involving a complex central beta random variable different from, but analogous to the Reed, Mallett, and Brennan beta loss factor provides a working solution to this problem, facilitating MSE prediction well into the threshold region with remarkable accuracy. [PUBLICATION ABSTRACT]</description><subject>Errors</subject><subject>Estimating techniques</subject><subject>Information systems</subject><subject>Predictions</subject><subject>Probability</subject><subject>Theory</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqNjUFOwzAQRS0EEoFyhxH7SHGJS7NGIDawAPbVKJk2LrYnnXGAM3BqDII9q9HT_P_fkamsc9d1t3Ltsamaxq7rrm3Xp-ZMdV-wdXZZmc8HwlTrYUahAUiEBTANkEchHTkM8Pz4BFN5-j57TsBbiPjh4xzr4F8p-JF5APW7hAEmFIyUSYA0-4g_jXefxz8ujp4Df7sSe6VCbygBU0-6MCdbDEoXv_fcXN7dvtzc15PwYS4Dmz3PUjS6sZ3r7HLlmqt_hb4AEaNWxg</recordid><startdate>20060501</startdate><enddate>20060501</enddate><creator>Richmond, C D</creator><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20060501</creationdate><title>Mean-squared error and threshold SNR prediction of maximum-likelihood signal parameter estimation with estimated colored noise covarlances</title><author>Richmond, C D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_1959126503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Errors</topic><topic>Estimating techniques</topic><topic>Information systems</topic><topic>Predictions</topic><topic>Probability</topic><topic>Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Richmond, C D</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Richmond, C D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mean-squared error and threshold SNR prediction of maximum-likelihood signal parameter estimation with estimated colored noise covarlances</atitle><jtitle>IEEE transactions on information theory</jtitle><date>2006-05-01</date><risdate>2006</risdate><volume>52</volume><issue>5</issue><spage>2146</spage><pages>2146-</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>An interval error-based method (MIE) of predicting mean squared error (MSE) performance of maximum-likelihood estimators (MLEs) is extended to the case of signal parameter estimation requiring intermediate estimation of an unknown colored noise covariance matrix; an intermediate step central to adaptive array detection and parameter estimation. The successful application of MIE requires good approximations of two quantities: 1) interval error probabilities and 2) asymptotic (SNR/spl rarr//spl infin/) local MSE performance of the MLE. Exact general expressions for the pairwise error probabilities that include the effects of signal model mismatch are derived herein, that in conjunction with the Union Bound provide accurate prediction of the required interval error probabilities. The Crame/spl acute/r-Rao Bound (CRB) often provides adequate prediction of the asymptotic local MSE performance of MLE. The signal parameters, however, are decoupled from the colored noise parameters in the Fisher Information Matrix for the deterministic signal model, rendering the CRB incapable of reflecting loss due to colored noise covariance estimation. A new modification of the CRB involving a complex central beta random variable different from, but analogous to the Reed, Mallett, and Brennan beta loss factor provides a working solution to this problem, facilitating MSE prediction well into the threshold region with remarkable accuracy. [PUBLICATION ABSTRACT]</abstract><cop>New York</cop><pub>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</pub></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9448 |
ispartof | IEEE transactions on information theory, 2006-05, Vol.52 (5), p.2146 |
issn | 0018-9448 1557-9654 |
language | eng |
recordid | cdi_proquest_journals_195912650 |
source | IEEE Electronic Library (IEL) |
subjects | Errors Estimating techniques Information systems Predictions Probability Theory |
title | Mean-squared error and threshold SNR prediction of maximum-likelihood signal parameter estimation with estimated colored noise covarlances |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T23%3A53%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mean-squared%20error%20and%20threshold%20SNR%20prediction%20of%20maximum-likelihood%20signal%20parameter%20estimation%20with%20estimated%20colored%20noise%20covarlances&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Richmond,%20C%20D&rft.date=2006-05-01&rft.volume=52&rft.issue=5&rft.spage=2146&rft.pages=2146-&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/&rft_dat=%3Cproquest%3E1048758381%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=195912650&rft_id=info:pmid/&rfr_iscdi=true |