On the Entropy Rate of Pattern Processes

We study the entropy rate of pattern sequences of stochastic processes, and its relationship to the entropy rate of the original process. We give a complete characterization of this relationship for independent and identically distributed (i.i.d.) processes over arbitrary alphabets, stationary ergod...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2006-09, Vol.52 (9), p.3994-4007
Hauptverfasser: Gemelos, G.M., Weissman, T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4007
container_issue 9
container_start_page 3994
container_title IEEE transactions on information theory
container_volume 52
creator Gemelos, G.M.
Weissman, T.
description We study the entropy rate of pattern sequences of stochastic processes, and its relationship to the entropy rate of the original process. We give a complete characterization of this relationship for independent and identically distributed (i.i.d.) processes over arbitrary alphabets, stationary ergodic processes over discrete alphabets, and a broad family of stationary ergodic processes over uncountable alphabets. For cases where the entropy rate of the pattern process is infinite, we characterize the possible growth rate of the block entropy
doi_str_mv 10.1109/TIT.2006.880044
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_195909703</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1683921</ieee_id><sourcerecordid>914653864</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-3e19e246ed206fa3ee09a5ce2cd426e30c092f4188d94eae01baf347e0f10173</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMoWD_OHrwsguhl28nmY5OjlKqFQovsPcR0glu2uzXZHvrvTdlCwdMwzPO-DA8hDxTGlIKeVPNqXADIsVIAnF-QERWizLUU_JKMAKjKNefqmtzEuEkrF7QYkddlm_U_mM3aPnS7Q_Zle8w6n61s32Nos1XoHMaI8Y5cedtEvD_NW1K9z6rpZ75Yfsynb4vcMQF9zpBqLLjEdQHSW4YI2gqHhVvzQiIDB7rwnCq11hwtAv22nvESwVOgJbslL0PtLnS_e4y92dbRYdPYFrt9NJpyKZiSPJFP_8hNtw9t-s1QLTToEliCJgPkQhdjQG92od7acDAUzFGbSdrMUZsZtKXE86nWRmcbH2zr6niOKRCa6SJxjwNXI-L5LFU6UvYHre1zHQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195909703</pqid></control><display><type>article</type><title>On the Entropy Rate of Pattern Processes</title><source>IEEE Electronic Library (IEL)</source><creator>Gemelos, G.M. ; Weissman, T.</creator><creatorcontrib>Gemelos, G.M. ; Weissman, T.</creatorcontrib><description>We study the entropy rate of pattern sequences of stochastic processes, and its relationship to the entropy rate of the original process. We give a complete characterization of this relationship for independent and identically distributed (i.i.d.) processes over arbitrary alphabets, stationary ergodic processes over discrete alphabets, and a broad family of stationary ergodic processes over uncountable alphabets. For cases where the entropy rate of the pattern process is infinite, we characterize the possible growth rate of the block entropy</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2006.880044</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Alphabets ; Applied sciences ; Blocking ; Coding, codes ; Entropy ; entropy rate ; Ergodic processes ; Exact sciences and technology ; Information theory ; Information, signal and communications theory ; large alphabet ; Mathematical analysis ; pattern ; Random processes ; Signal and communications theory ; Source coding ; Stochastic models ; Stochastic processes ; Telecommunications and information theory ; unknown alphabet</subject><ispartof>IEEE transactions on information theory, 2006-09, Vol.52 (9), p.3994-4007</ispartof><rights>2006 INIST-CNRS</rights><rights>Copyright Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-3e19e246ed206fa3ee09a5ce2cd426e30c092f4188d94eae01baf347e0f10173</citedby><cites>FETCH-LOGICAL-c350t-3e19e246ed206fa3ee09a5ce2cd426e30c092f4188d94eae01baf347e0f10173</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1683921$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1683921$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18059392$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Gemelos, G.M.</creatorcontrib><creatorcontrib>Weissman, T.</creatorcontrib><title>On the Entropy Rate of Pattern Processes</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>We study the entropy rate of pattern sequences of stochastic processes, and its relationship to the entropy rate of the original process. We give a complete characterization of this relationship for independent and identically distributed (i.i.d.) processes over arbitrary alphabets, stationary ergodic processes over discrete alphabets, and a broad family of stationary ergodic processes over uncountable alphabets. For cases where the entropy rate of the pattern process is infinite, we characterize the possible growth rate of the block entropy</description><subject>Alphabets</subject><subject>Applied sciences</subject><subject>Blocking</subject><subject>Coding, codes</subject><subject>Entropy</subject><subject>entropy rate</subject><subject>Ergodic processes</subject><subject>Exact sciences and technology</subject><subject>Information theory</subject><subject>Information, signal and communications theory</subject><subject>large alphabet</subject><subject>Mathematical analysis</subject><subject>pattern</subject><subject>Random processes</subject><subject>Signal and communications theory</subject><subject>Source coding</subject><subject>Stochastic models</subject><subject>Stochastic processes</subject><subject>Telecommunications and information theory</subject><subject>unknown alphabet</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1LAzEQhoMoWD_OHrwsguhl28nmY5OjlKqFQovsPcR0glu2uzXZHvrvTdlCwdMwzPO-DA8hDxTGlIKeVPNqXADIsVIAnF-QERWizLUU_JKMAKjKNefqmtzEuEkrF7QYkddlm_U_mM3aPnS7Q_Zle8w6n61s32Nos1XoHMaI8Y5cedtEvD_NW1K9z6rpZ75Yfsynb4vcMQF9zpBqLLjEdQHSW4YI2gqHhVvzQiIDB7rwnCq11hwtAv22nvESwVOgJbslL0PtLnS_e4y92dbRYdPYFrt9NJpyKZiSPJFP_8hNtw9t-s1QLTToEliCJgPkQhdjQG92od7acDAUzFGbSdrMUZsZtKXE86nWRmcbH2zr6niOKRCa6SJxjwNXI-L5LFU6UvYHre1zHQ</recordid><startdate>20060901</startdate><enddate>20060901</enddate><creator>Gemelos, G.M.</creator><creator>Weissman, T.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20060901</creationdate><title>On the Entropy Rate of Pattern Processes</title><author>Gemelos, G.M. ; Weissman, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-3e19e246ed206fa3ee09a5ce2cd426e30c092f4188d94eae01baf347e0f10173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Alphabets</topic><topic>Applied sciences</topic><topic>Blocking</topic><topic>Coding, codes</topic><topic>Entropy</topic><topic>entropy rate</topic><topic>Ergodic processes</topic><topic>Exact sciences and technology</topic><topic>Information theory</topic><topic>Information, signal and communications theory</topic><topic>large alphabet</topic><topic>Mathematical analysis</topic><topic>pattern</topic><topic>Random processes</topic><topic>Signal and communications theory</topic><topic>Source coding</topic><topic>Stochastic models</topic><topic>Stochastic processes</topic><topic>Telecommunications and information theory</topic><topic>unknown alphabet</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gemelos, G.M.</creatorcontrib><creatorcontrib>Weissman, T.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gemelos, G.M.</au><au>Weissman, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Entropy Rate of Pattern Processes</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2006-09-01</date><risdate>2006</risdate><volume>52</volume><issue>9</issue><spage>3994</spage><epage>4007</epage><pages>3994-4007</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>We study the entropy rate of pattern sequences of stochastic processes, and its relationship to the entropy rate of the original process. We give a complete characterization of this relationship for independent and identically distributed (i.i.d.) processes over arbitrary alphabets, stationary ergodic processes over discrete alphabets, and a broad family of stationary ergodic processes over uncountable alphabets. For cases where the entropy rate of the pattern process is infinite, we characterize the possible growth rate of the block entropy</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TIT.2006.880044</doi><tpages>14</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9448
ispartof IEEE transactions on information theory, 2006-09, Vol.52 (9), p.3994-4007
issn 0018-9448
1557-9654
language eng
recordid cdi_proquest_journals_195909703
source IEEE Electronic Library (IEL)
subjects Alphabets
Applied sciences
Blocking
Coding, codes
Entropy
entropy rate
Ergodic processes
Exact sciences and technology
Information theory
Information, signal and communications theory
large alphabet
Mathematical analysis
pattern
Random processes
Signal and communications theory
Source coding
Stochastic models
Stochastic processes
Telecommunications and information theory
unknown alphabet
title On the Entropy Rate of Pattern Processes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T04%3A20%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Entropy%20Rate%20of%20Pattern%20Processes&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Gemelos,%20G.M.&rft.date=2006-09-01&rft.volume=52&rft.issue=9&rft.spage=3994&rft.epage=4007&rft.pages=3994-4007&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2006.880044&rft_dat=%3Cproquest_RIE%3E914653864%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=195909703&rft_id=info:pmid/&rft_ieee_id=1683921&rfr_iscdi=true