The computational intractability of training sigmoidal neural networks
We demonstrate that the problem of approximately interpolating a target function by a neural network is computationally intractable. In particular the interpolation training problem for a neural network with two monotone Lipschitzian sigmoidal internal activation functions and one linear output node...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 1997-01, Vol.43 (1), p.167-173 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 173 |
---|---|
container_issue | 1 |
container_start_page | 167 |
container_title | IEEE transactions on information theory |
container_volume | 43 |
creator | Jones, L.K. |
description | We demonstrate that the problem of approximately interpolating a target function by a neural network is computationally intractable. In particular the interpolation training problem for a neural network with two monotone Lipschitzian sigmoidal internal activation functions and one linear output node is shown to be NP-hard and NP-complete if the internal nodes are in addition piecewise ratios of polynomials. This partially answers a question of Blum and Rivest (1992) concerning the NP-completeness of training a logistic sigmoidal 3-node network. An extension of the result is then given for networks with n monotone sigmoidal internal nodes and one convex output node. This indicates that many multivariate nonlinear regression problems may be computationally infeasible. |
doi_str_mv | 10.1109/18.567673 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_195904498</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>567673</ieee_id><sourcerecordid>11081725</sourcerecordid><originalsourceid>FETCH-LOGICAL-c304t-7e80ac6048267c970f93cdadd9624e2a18848cc742d8aa62ae7c0e991a8c59953</originalsourceid><addsrcrecordid>eNpd0M9LwzAUB_AgCtbpwaun4kHw0Jmk-XmU4VQYeJnnENN0ZrbNTFJk_73RDg-eHl_ehwfvC8AlgnOEoLxDYk4ZZ7w-AgWilFeSUXIMCgiRqCQh4hScxbjNkVCEC7Bcv9vS-H43Jp2cH3RXuiEFbZJ-c51L-9K3Zc5ucMOmjG7Te9dkNNgx_I705cNHPAcnre6ivTjMGXhdPqwXT9Xq5fF5cb-qTA1JqrgVUBsGicCMG8lhK2vT6KaRDBOLNRKCCGM4wY3QmmFtuYFWSqSFoVLSegZupru74D9HG5PqXTS26_Rg_RgVFowLVJMMr__BrR9Dfi8qJKmEhEiR0e2ETPAxBtuqXXC9DnuFoPqpUyGhpjqzvZqss9b-ucPyGxumb60</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195904498</pqid></control><display><type>article</type><title>The computational intractability of training sigmoidal neural networks</title><source>IEEE Electronic Library (IEL)</source><creator>Jones, L.K.</creator><creatorcontrib>Jones, L.K.</creatorcontrib><description>We demonstrate that the problem of approximately interpolating a target function by a neural network is computationally intractable. In particular the interpolation training problem for a neural network with two monotone Lipschitzian sigmoidal internal activation functions and one linear output node is shown to be NP-hard and NP-complete if the internal nodes are in addition piecewise ratios of polynomials. This partially answers a question of Blum and Rivest (1992) concerning the NP-completeness of training a logistic sigmoidal 3-node network. An extension of the result is then given for networks with n monotone sigmoidal internal nodes and one convex output node. This indicates that many multivariate nonlinear regression problems may be computationally infeasible.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/18.567673</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Computer networks ; Feedforward neural networks ; Information technology ; Interpolation ; Logistics ; Neural networks ; Polynomials ; Search problems ; Vectors</subject><ispartof>IEEE transactions on information theory, 1997-01, Vol.43 (1), p.167-173</ispartof><rights>Copyright Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 1997</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c304t-7e80ac6048267c970f93cdadd9624e2a18848cc742d8aa62ae7c0e991a8c59953</citedby><cites>FETCH-LOGICAL-c304t-7e80ac6048267c970f93cdadd9624e2a18848cc742d8aa62ae7c0e991a8c59953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/567673$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27907,27908,54741</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/567673$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jones, L.K.</creatorcontrib><title>The computational intractability of training sigmoidal neural networks</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>We demonstrate that the problem of approximately interpolating a target function by a neural network is computationally intractable. In particular the interpolation training problem for a neural network with two monotone Lipschitzian sigmoidal internal activation functions and one linear output node is shown to be NP-hard and NP-complete if the internal nodes are in addition piecewise ratios of polynomials. This partially answers a question of Blum and Rivest (1992) concerning the NP-completeness of training a logistic sigmoidal 3-node network. An extension of the result is then given for networks with n monotone sigmoidal internal nodes and one convex output node. This indicates that many multivariate nonlinear regression problems may be computationally infeasible.</description><subject>Computer networks</subject><subject>Feedforward neural networks</subject><subject>Information technology</subject><subject>Interpolation</subject><subject>Logistics</subject><subject>Neural networks</subject><subject>Polynomials</subject><subject>Search problems</subject><subject>Vectors</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNpd0M9LwzAUB_AgCtbpwaun4kHw0Jmk-XmU4VQYeJnnENN0ZrbNTFJk_73RDg-eHl_ehwfvC8AlgnOEoLxDYk4ZZ7w-AgWilFeSUXIMCgiRqCQh4hScxbjNkVCEC7Bcv9vS-H43Jp2cH3RXuiEFbZJ-c51L-9K3Zc5ucMOmjG7Te9dkNNgx_I705cNHPAcnre6ivTjMGXhdPqwXT9Xq5fF5cb-qTA1JqrgVUBsGicCMG8lhK2vT6KaRDBOLNRKCCGM4wY3QmmFtuYFWSqSFoVLSegZupru74D9HG5PqXTS26_Rg_RgVFowLVJMMr__BrR9Dfi8qJKmEhEiR0e2ETPAxBtuqXXC9DnuFoPqpUyGhpjqzvZqss9b-ucPyGxumb60</recordid><startdate>199701</startdate><enddate>199701</enddate><creator>Jones, L.K.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>199701</creationdate><title>The computational intractability of training sigmoidal neural networks</title><author>Jones, L.K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c304t-7e80ac6048267c970f93cdadd9624e2a18848cc742d8aa62ae7c0e991a8c59953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Computer networks</topic><topic>Feedforward neural networks</topic><topic>Information technology</topic><topic>Interpolation</topic><topic>Logistics</topic><topic>Neural networks</topic><topic>Polynomials</topic><topic>Search problems</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jones, L.K.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jones, L.K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The computational intractability of training sigmoidal neural networks</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>1997-01</date><risdate>1997</risdate><volume>43</volume><issue>1</issue><spage>167</spage><epage>173</epage><pages>167-173</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>We demonstrate that the problem of approximately interpolating a target function by a neural network is computationally intractable. In particular the interpolation training problem for a neural network with two monotone Lipschitzian sigmoidal internal activation functions and one linear output node is shown to be NP-hard and NP-complete if the internal nodes are in addition piecewise ratios of polynomials. This partially answers a question of Blum and Rivest (1992) concerning the NP-completeness of training a logistic sigmoidal 3-node network. An extension of the result is then given for networks with n monotone sigmoidal internal nodes and one convex output node. This indicates that many multivariate nonlinear regression problems may be computationally infeasible.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/18.567673</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9448 |
ispartof | IEEE transactions on information theory, 1997-01, Vol.43 (1), p.167-173 |
issn | 0018-9448 1557-9654 |
language | eng |
recordid | cdi_proquest_journals_195904498 |
source | IEEE Electronic Library (IEL) |
subjects | Computer networks Feedforward neural networks Information technology Interpolation Logistics Neural networks Polynomials Search problems Vectors |
title | The computational intractability of training sigmoidal neural networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T08%3A27%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20computational%20intractability%20of%20training%20sigmoidal%20neural%20networks&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Jones,%20L.K.&rft.date=1997-01&rft.volume=43&rft.issue=1&rft.spage=167&rft.epage=173&rft.pages=167-173&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/18.567673&rft_dat=%3Cproquest_RIE%3E11081725%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=195904498&rft_id=info:pmid/&rft_ieee_id=567673&rfr_iscdi=true |