Strong consistency of the over- and underdetermined LSE of 2-D exponentials in white noise

We consider the problem of least squares estimation of the parameters of two-dimensional (2-D) exponential signals observed in the presence of an additive noise field, when the assumed number of exponentials is incorrect. We consider both the case where the number of exponential signals is underesti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2005-09, Vol.51 (9), p.3314-3321
Hauptverfasser: Kliger, M., Francos, J.M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3321
container_issue 9
container_start_page 3314
container_title IEEE transactions on information theory
container_volume 51
creator Kliger, M.
Francos, J.M.
description We consider the problem of least squares estimation of the parameters of two-dimensional (2-D) exponential signals observed in the presence of an additive noise field, when the assumed number of exponentials is incorrect. We consider both the case where the number of exponential signals is underestimated, and the case where the number of exponential signals is overestimated. In the case where the number of exponential signals is underestimated, we prove the almost sure convergence of the least squares estimates (LSE) to the parameters of the dominant exponentials. In the case where the number of exponential signals is overestimated, the estimated parameter vector obtained by the least squares estimator contains a subvector that converges almost surely to the correct parameters of the exponentials.
doi_str_mv 10.1109/TIT.2005.853311
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_195901210</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1499063</ieee_id><sourcerecordid>914642508</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-2644525e5b850fcd8778b5b43ea358fe0c29c8f912d8ae43e814b74057bba793</originalsourceid><addsrcrecordid>eNp9kTFvFDEQhS0EEkegpqCxkEiqvYy9nl27RCGBSCelyFVpLK93lji6sw97D8i_j08XKRIF1WhmvvdGo8fYRwFLIcCcr6_XSwmAS41tK8QrthCIfWM6VK_ZAkDoxiil37J3pTzUVqGQC3Z3O-cUf3KfYgllpugfeZr4fE88_abccBdHvo8j5ZFmytsQaeSr28sDJJtvnP7uUqQ4B7cpPET-5z7MxGMKhd6zN1Od0ofnesLWV5frix_N6ub79cXXVeOVlHMjO6VQIuGgESY_6r7XAw6qJdeingi8NF5PRshRO6pjLdTQK8B-GFxv2hN2drTd5fRrT2W221A8bTYuUtoXa4TqlETQlTz9Lyk19AidquDnf8CHtM-xPmGFQQNCCqjQ-RHyOZWSabK7HLYuP1oB9pCIrYnYQyL2mEhVfHm2dcW7zZRd9KG8yHpALc3h_KcjF4joZa2Mga5tnwDToZJB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195901210</pqid></control><display><type>article</type><title>Strong consistency of the over- and underdetermined LSE of 2-D exponentials in white noise</title><source>IEEE Electronic Library (IEL)</source><creator>Kliger, M. ; Francos, J.M.</creator><creatorcontrib>Kliger, M. ; Francos, J.M.</creatorcontrib><description>We consider the problem of least squares estimation of the parameters of two-dimensional (2-D) exponential signals observed in the presence of an additive noise field, when the assumed number of exponentials is incorrect. We consider both the case where the number of exponential signals is underestimated, and the case where the number of exponential signals is overestimated. In the case where the number of exponential signals is underestimated, we prove the almost sure convergence of the least squares estimates (LSE) to the parameters of the dominant exponentials. In the case where the number of exponential signals is overestimated, the estimated parameter vector obtained by the least squares estimator contains a subvector that converges almost surely to the correct parameters of the exponentials.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2005.853311</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>2-D parameter estimation ; Additive noise ; Applied sciences ; Communication channels ; Consistency ; Convergence ; Detection, estimation, filtering, equalization, prediction ; Electric noise ; Error analysis ; Estimates ; Estimators ; Exact sciences and technology ; Gaussian noise ; Information, signal and communications theory ; Least squares approximation ; Least squares estimation ; Least squares method ; Mathematical analysis ; Maximum likelihood detection ; Maximum likelihood estimation ; model-order selection ; Parameter estimation ; Performance analysis ; random fields ; Signal and communications theory ; Signal, noise ; Signaling ; strong consistency ; Telecommunications and information theory ; Two dimensional ; two-dimensional (2-D) exponentials ; Vectors (mathematics) ; White noise</subject><ispartof>IEEE transactions on information theory, 2005-09, Vol.51 (9), p.3314-3321</ispartof><rights>2005 INIST-CNRS</rights><rights>Copyright Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-2644525e5b850fcd8778b5b43ea358fe0c29c8f912d8ae43e814b74057bba793</citedby><cites>FETCH-LOGICAL-c422t-2644525e5b850fcd8778b5b43ea358fe0c29c8f912d8ae43e814b74057bba793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1499063$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1499063$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17058294$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kliger, M.</creatorcontrib><creatorcontrib>Francos, J.M.</creatorcontrib><title>Strong consistency of the over- and underdetermined LSE of 2-D exponentials in white noise</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>We consider the problem of least squares estimation of the parameters of two-dimensional (2-D) exponential signals observed in the presence of an additive noise field, when the assumed number of exponentials is incorrect. We consider both the case where the number of exponential signals is underestimated, and the case where the number of exponential signals is overestimated. In the case where the number of exponential signals is underestimated, we prove the almost sure convergence of the least squares estimates (LSE) to the parameters of the dominant exponentials. In the case where the number of exponential signals is overestimated, the estimated parameter vector obtained by the least squares estimator contains a subvector that converges almost surely to the correct parameters of the exponentials.</description><subject>2-D parameter estimation</subject><subject>Additive noise</subject><subject>Applied sciences</subject><subject>Communication channels</subject><subject>Consistency</subject><subject>Convergence</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Electric noise</subject><subject>Error analysis</subject><subject>Estimates</subject><subject>Estimators</subject><subject>Exact sciences and technology</subject><subject>Gaussian noise</subject><subject>Information, signal and communications theory</subject><subject>Least squares approximation</subject><subject>Least squares estimation</subject><subject>Least squares method</subject><subject>Mathematical analysis</subject><subject>Maximum likelihood detection</subject><subject>Maximum likelihood estimation</subject><subject>model-order selection</subject><subject>Parameter estimation</subject><subject>Performance analysis</subject><subject>random fields</subject><subject>Signal and communications theory</subject><subject>Signal, noise</subject><subject>Signaling</subject><subject>strong consistency</subject><subject>Telecommunications and information theory</subject><subject>Two dimensional</subject><subject>two-dimensional (2-D) exponentials</subject><subject>Vectors (mathematics)</subject><subject>White noise</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kTFvFDEQhS0EEkegpqCxkEiqvYy9nl27RCGBSCelyFVpLK93lji6sw97D8i_j08XKRIF1WhmvvdGo8fYRwFLIcCcr6_XSwmAS41tK8QrthCIfWM6VK_ZAkDoxiil37J3pTzUVqGQC3Z3O-cUf3KfYgllpugfeZr4fE88_abccBdHvo8j5ZFmytsQaeSr28sDJJtvnP7uUqQ4B7cpPET-5z7MxGMKhd6zN1Od0ofnesLWV5frix_N6ub79cXXVeOVlHMjO6VQIuGgESY_6r7XAw6qJdeingi8NF5PRshRO6pjLdTQK8B-GFxv2hN2drTd5fRrT2W221A8bTYuUtoXa4TqlETQlTz9Lyk19AidquDnf8CHtM-xPmGFQQNCCqjQ-RHyOZWSabK7HLYuP1oB9pCIrYnYQyL2mEhVfHm2dcW7zZRd9KG8yHpALc3h_KcjF4joZa2Mga5tnwDToZJB</recordid><startdate>20050901</startdate><enddate>20050901</enddate><creator>Kliger, M.</creator><creator>Francos, J.M.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20050901</creationdate><title>Strong consistency of the over- and underdetermined LSE of 2-D exponentials in white noise</title><author>Kliger, M. ; Francos, J.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-2644525e5b850fcd8778b5b43ea358fe0c29c8f912d8ae43e814b74057bba793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>2-D parameter estimation</topic><topic>Additive noise</topic><topic>Applied sciences</topic><topic>Communication channels</topic><topic>Consistency</topic><topic>Convergence</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Electric noise</topic><topic>Error analysis</topic><topic>Estimates</topic><topic>Estimators</topic><topic>Exact sciences and technology</topic><topic>Gaussian noise</topic><topic>Information, signal and communications theory</topic><topic>Least squares approximation</topic><topic>Least squares estimation</topic><topic>Least squares method</topic><topic>Mathematical analysis</topic><topic>Maximum likelihood detection</topic><topic>Maximum likelihood estimation</topic><topic>model-order selection</topic><topic>Parameter estimation</topic><topic>Performance analysis</topic><topic>random fields</topic><topic>Signal and communications theory</topic><topic>Signal, noise</topic><topic>Signaling</topic><topic>strong consistency</topic><topic>Telecommunications and information theory</topic><topic>Two dimensional</topic><topic>two-dimensional (2-D) exponentials</topic><topic>Vectors (mathematics)</topic><topic>White noise</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kliger, M.</creatorcontrib><creatorcontrib>Francos, J.M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kliger, M.</au><au>Francos, J.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strong consistency of the over- and underdetermined LSE of 2-D exponentials in white noise</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2005-09-01</date><risdate>2005</risdate><volume>51</volume><issue>9</issue><spage>3314</spage><epage>3321</epage><pages>3314-3321</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>We consider the problem of least squares estimation of the parameters of two-dimensional (2-D) exponential signals observed in the presence of an additive noise field, when the assumed number of exponentials is incorrect. We consider both the case where the number of exponential signals is underestimated, and the case where the number of exponential signals is overestimated. In the case where the number of exponential signals is underestimated, we prove the almost sure convergence of the least squares estimates (LSE) to the parameters of the dominant exponentials. In the case where the number of exponential signals is overestimated, the estimated parameter vector obtained by the least squares estimator contains a subvector that converges almost surely to the correct parameters of the exponentials.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TIT.2005.853311</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9448
ispartof IEEE transactions on information theory, 2005-09, Vol.51 (9), p.3314-3321
issn 0018-9448
1557-9654
language eng
recordid cdi_proquest_journals_195901210
source IEEE Electronic Library (IEL)
subjects 2-D parameter estimation
Additive noise
Applied sciences
Communication channels
Consistency
Convergence
Detection, estimation, filtering, equalization, prediction
Electric noise
Error analysis
Estimates
Estimators
Exact sciences and technology
Gaussian noise
Information, signal and communications theory
Least squares approximation
Least squares estimation
Least squares method
Mathematical analysis
Maximum likelihood detection
Maximum likelihood estimation
model-order selection
Parameter estimation
Performance analysis
random fields
Signal and communications theory
Signal, noise
Signaling
strong consistency
Telecommunications and information theory
Two dimensional
two-dimensional (2-D) exponentials
Vectors (mathematics)
White noise
title Strong consistency of the over- and underdetermined LSE of 2-D exponentials in white noise
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T04%3A49%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strong%20consistency%20of%20the%20over-%20and%20underdetermined%20LSE%20of%202-D%20exponentials%20in%20white%20noise&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Kliger,%20M.&rft.date=2005-09-01&rft.volume=51&rft.issue=9&rft.spage=3314&rft.epage=3321&rft.pages=3314-3321&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2005.853311&rft_dat=%3Cproquest_RIE%3E914642508%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=195901210&rft_id=info:pmid/&rft_ieee_id=1499063&rfr_iscdi=true