NORMAL DERIVATIONS AND SEQUENT DERIVATIONS

The well-known picture that sequent derivations without cuts and normal derivations "are the same" will be changed. Sequent derivations without maximum cuts (i.e. special cuts which correspond to maximum segments from natural deduction) will be considered. It will be shown that the natural...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of philosophical logic 2008-12, Vol.37 (6), p.521-548
1. Verfasser: Borisavljevi, Mirjana
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 548
container_issue 6
container_start_page 521
container_title Journal of philosophical logic
container_volume 37
creator Borisavljevi, Mirjana
description The well-known picture that sequent derivations without cuts and normal derivations "are the same" will be changed. Sequent derivations without maximum cuts (i.e. special cuts which correspond to maximum segments from natural deduction) will be considered. It will be shown that the natural deduction image of a sequent derivation without maximum cuts is a normal derivation, and the sequent image of a normal derivation is a derivation without maximum cuts. The main consequence of that property will be that sequent derivations without maximum cuts and normal derivations "are the same".
doi_str_mv 10.1007/s10992-008-9084-4
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_195898608</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41217853</jstor_id><sourcerecordid>41217853</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-93955339ba2408241ef93239da87418dc066ac7217edf8daa02d6ae482d0fc053</originalsourceid><addsrcrecordid>eNp9kM1KAzEURoMoWKsP4EIoghshem-SmUmWgx21UKfYH7chZjLSUjs1aRe-vSlTSleuAsn5Tu79CLlGeECA7DEgKMUogKQKpKDihHQwyTgFwfkp6QAwRnmKeE4uQlhABJFnHXJfjsZv-bDXL8aDj3w6GJWTXl72e5PifVaU0-P7S3JWm2VwV_uzS2bPxfTplQ5HL4OnfEgtT7MNVVwlCefq0zABkgl0teKMq8rITKCsLKSpsRnDzFW1rIwBVqXGCckqqC0kvEtuW-_aNz9bFzZ60Wz9Kn6pUSVSyRRkhLCFrG9C8K7Waz__Nv5XI-hdI7ptRMdF9a4RLWLmbi82wZpl7c3KzsMhyKJWMOCRYy0X4tPqy_mjAf6R37ShRdg0_iAVGBeVsY8_oM5zuQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195898608</pqid></control><display><type>article</type><title>NORMAL DERIVATIONS AND SEQUENT DERIVATIONS</title><source>SpringerNature Journals</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Borisavljevi, Mirjana</creator><creatorcontrib>Borisavljevi, Mirjana</creatorcontrib><description>The well-known picture that sequent derivations without cuts and normal derivations "are the same" will be changed. Sequent derivations without maximum cuts (i.e. special cuts which correspond to maximum segments from natural deduction) will be considered. It will be shown that the natural deduction image of a sequent derivation without maximum cuts is a normal derivation, and the sequent image of a normal derivation is a derivation without maximum cuts. The main consequence of that property will be that sequent derivations without maximum cuts and normal derivations "are the same".</description><identifier>ISSN: 0022-3611</identifier><identifier>EISSN: 1573-0433</identifier><identifier>DOI: 10.1007/s10992-008-9084-4</identifier><language>eng</language><publisher>Dordrecht: Springer</publisher><subject>Archives &amp; records ; Cut elimination theorem ; Education ; Logic ; Logical proofs ; Logical theorems ; Mathematical logic ; Mathematical theorems ; Natural deduction calculus ; Philosophical logics. Philosophy of language ; Philosophy ; Predicate logic ; Rules of inference ; Sequents ; Traffic control</subject><ispartof>Journal of philosophical logic, 2008-12, Vol.37 (6), p.521-548</ispartof><rights>Springer Science + Business Media B.V. 2008</rights><rights>Springer Science+Business Media B.V. 2008</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-93955339ba2408241ef93239da87418dc066ac7217edf8daa02d6ae482d0fc053</citedby><cites>FETCH-LOGICAL-c367t-93955339ba2408241ef93239da87418dc066ac7217edf8daa02d6ae482d0fc053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41217853$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41217853$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,27924,27925,41488,42557,51319,58017,58250</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20834203$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Borisavljevi, Mirjana</creatorcontrib><title>NORMAL DERIVATIONS AND SEQUENT DERIVATIONS</title><title>Journal of philosophical logic</title><addtitle>J Philos Logic</addtitle><description>The well-known picture that sequent derivations without cuts and normal derivations "are the same" will be changed. Sequent derivations without maximum cuts (i.e. special cuts which correspond to maximum segments from natural deduction) will be considered. It will be shown that the natural deduction image of a sequent derivation without maximum cuts is a normal derivation, and the sequent image of a normal derivation is a derivation without maximum cuts. The main consequence of that property will be that sequent derivations without maximum cuts and normal derivations "are the same".</description><subject>Archives &amp; records</subject><subject>Cut elimination theorem</subject><subject>Education</subject><subject>Logic</subject><subject>Logical proofs</subject><subject>Logical theorems</subject><subject>Mathematical logic</subject><subject>Mathematical theorems</subject><subject>Natural deduction calculus</subject><subject>Philosophical logics. Philosophy of language</subject><subject>Philosophy</subject><subject>Predicate logic</subject><subject>Rules of inference</subject><subject>Sequents</subject><subject>Traffic control</subject><issn>0022-3611</issn><issn>1573-0433</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AIMQZ</sourceid><sourceid>AVQMV</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>K50</sourceid><sourceid>M1D</sourceid><sourceid>M2O</sourceid><recordid>eNp9kM1KAzEURoMoWKsP4EIoghshem-SmUmWgx21UKfYH7chZjLSUjs1aRe-vSlTSleuAsn5Tu79CLlGeECA7DEgKMUogKQKpKDihHQwyTgFwfkp6QAwRnmKeE4uQlhABJFnHXJfjsZv-bDXL8aDj3w6GJWTXl72e5PifVaU0-P7S3JWm2VwV_uzS2bPxfTplQ5HL4OnfEgtT7MNVVwlCefq0zABkgl0teKMq8rITKCsLKSpsRnDzFW1rIwBVqXGCckqqC0kvEtuW-_aNz9bFzZ60Wz9Kn6pUSVSyRRkhLCFrG9C8K7Waz__Nv5XI-hdI7ptRMdF9a4RLWLmbi82wZpl7c3KzsMhyKJWMOCRYy0X4tPqy_mjAf6R37ShRdg0_iAVGBeVsY8_oM5zuQ</recordid><startdate>20081201</startdate><enddate>20081201</enddate><creator>Borisavljevi, Mirjana</creator><general>Springer</general><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8FK</scope><scope>8G5</scope><scope>AABKS</scope><scope>ABSDQ</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AIMQZ</scope><scope>AVQMV</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GB0</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K50</scope><scope>LIQON</scope><scope>M1D</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20081201</creationdate><title>NORMAL DERIVATIONS AND SEQUENT DERIVATIONS</title><author>Borisavljevi, Mirjana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-93955339ba2408241ef93239da87418dc066ac7217edf8daa02d6ae482d0fc053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Archives &amp; records</topic><topic>Cut elimination theorem</topic><topic>Education</topic><topic>Logic</topic><topic>Logical proofs</topic><topic>Logical theorems</topic><topic>Mathematical logic</topic><topic>Mathematical theorems</topic><topic>Natural deduction calculus</topic><topic>Philosophical logics. Philosophy of language</topic><topic>Philosophy</topic><topic>Predicate logic</topic><topic>Rules of inference</topic><topic>Sequents</topic><topic>Traffic control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Borisavljevi, Mirjana</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Philosophy Collection</collection><collection>Philosophy Database</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest One Literature</collection><collection>Arts Premium Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>DELNET Social Sciences &amp; Humanities Collection</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Access via Art, Design &amp; Architecture Collection (ProQuest)</collection><collection>ProQuest One Literature - U.S. Customers Only</collection><collection>Arts &amp; Humanities Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of philosophical logic</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Borisavljevi, Mirjana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NORMAL DERIVATIONS AND SEQUENT DERIVATIONS</atitle><jtitle>Journal of philosophical logic</jtitle><stitle>J Philos Logic</stitle><date>2008-12-01</date><risdate>2008</risdate><volume>37</volume><issue>6</issue><spage>521</spage><epage>548</epage><pages>521-548</pages><issn>0022-3611</issn><eissn>1573-0433</eissn><abstract>The well-known picture that sequent derivations without cuts and normal derivations "are the same" will be changed. Sequent derivations without maximum cuts (i.e. special cuts which correspond to maximum segments from natural deduction) will be considered. It will be shown that the natural deduction image of a sequent derivation without maximum cuts is a normal derivation, and the sequent image of a normal derivation is a derivation without maximum cuts. The main consequence of that property will be that sequent derivations without maximum cuts and normal derivations "are the same".</abstract><cop>Dordrecht</cop><pub>Springer</pub><doi>10.1007/s10992-008-9084-4</doi><tpages>28</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-3611
ispartof Journal of philosophical logic, 2008-12, Vol.37 (6), p.521-548
issn 0022-3611
1573-0433
language eng
recordid cdi_proquest_journals_195898608
source SpringerNature Journals; JSTOR Archive Collection A-Z Listing
subjects Archives & records
Cut elimination theorem
Education
Logic
Logical proofs
Logical theorems
Mathematical logic
Mathematical theorems
Natural deduction calculus
Philosophical logics. Philosophy of language
Philosophy
Predicate logic
Rules of inference
Sequents
Traffic control
title NORMAL DERIVATIONS AND SEQUENT DERIVATIONS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T08%3A55%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NORMAL%20DERIVATIONS%20AND%20SEQUENT%20DERIVATIONS&rft.jtitle=Journal%20of%20philosophical%20logic&rft.au=Borisavljevi,%20Mirjana&rft.date=2008-12-01&rft.volume=37&rft.issue=6&rft.spage=521&rft.epage=548&rft.pages=521-548&rft.issn=0022-3611&rft.eissn=1573-0433&rft_id=info:doi/10.1007/s10992-008-9084-4&rft_dat=%3Cjstor_proqu%3E41217853%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=195898608&rft_id=info:pmid/&rft_jstor_id=41217853&rfr_iscdi=true