NORMAL DERIVATIONS AND SEQUENT DERIVATIONS
The well-known picture that sequent derivations without cuts and normal derivations "are the same" will be changed. Sequent derivations without maximum cuts (i.e. special cuts which correspond to maximum segments from natural deduction) will be considered. It will be shown that the natural...
Gespeichert in:
Veröffentlicht in: | Journal of philosophical logic 2008-12, Vol.37 (6), p.521-548 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 548 |
---|---|
container_issue | 6 |
container_start_page | 521 |
container_title | Journal of philosophical logic |
container_volume | 37 |
creator | Borisavljevi, Mirjana |
description | The well-known picture that sequent derivations without cuts and normal derivations "are the same" will be changed. Sequent derivations without maximum cuts (i.e. special cuts which correspond to maximum segments from natural deduction) will be considered. It will be shown that the natural deduction image of a sequent derivation without maximum cuts is a normal derivation, and the sequent image of a normal derivation is a derivation without maximum cuts. The main consequence of that property will be that sequent derivations without maximum cuts and normal derivations "are the same". |
doi_str_mv | 10.1007/s10992-008-9084-4 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_195898608</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41217853</jstor_id><sourcerecordid>41217853</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-93955339ba2408241ef93239da87418dc066ac7217edf8daa02d6ae482d0fc053</originalsourceid><addsrcrecordid>eNp9kM1KAzEURoMoWKsP4EIoghshem-SmUmWgx21UKfYH7chZjLSUjs1aRe-vSlTSleuAsn5Tu79CLlGeECA7DEgKMUogKQKpKDihHQwyTgFwfkp6QAwRnmKeE4uQlhABJFnHXJfjsZv-bDXL8aDj3w6GJWTXl72e5PifVaU0-P7S3JWm2VwV_uzS2bPxfTplQ5HL4OnfEgtT7MNVVwlCefq0zABkgl0teKMq8rITKCsLKSpsRnDzFW1rIwBVqXGCckqqC0kvEtuW-_aNz9bFzZ60Wz9Kn6pUSVSyRRkhLCFrG9C8K7Waz__Nv5XI-hdI7ptRMdF9a4RLWLmbi82wZpl7c3KzsMhyKJWMOCRYy0X4tPqy_mjAf6R37ShRdg0_iAVGBeVsY8_oM5zuQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195898608</pqid></control><display><type>article</type><title>NORMAL DERIVATIONS AND SEQUENT DERIVATIONS</title><source>SpringerNature Journals</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Borisavljevi, Mirjana</creator><creatorcontrib>Borisavljevi, Mirjana</creatorcontrib><description>The well-known picture that sequent derivations without cuts and normal derivations "are the same" will be changed. Sequent derivations without maximum cuts (i.e. special cuts which correspond to maximum segments from natural deduction) will be considered. It will be shown that the natural deduction image of a sequent derivation without maximum cuts is a normal derivation, and the sequent image of a normal derivation is a derivation without maximum cuts. The main consequence of that property will be that sequent derivations without maximum cuts and normal derivations "are the same".</description><identifier>ISSN: 0022-3611</identifier><identifier>EISSN: 1573-0433</identifier><identifier>DOI: 10.1007/s10992-008-9084-4</identifier><language>eng</language><publisher>Dordrecht: Springer</publisher><subject>Archives & records ; Cut elimination theorem ; Education ; Logic ; Logical proofs ; Logical theorems ; Mathematical logic ; Mathematical theorems ; Natural deduction calculus ; Philosophical logics. Philosophy of language ; Philosophy ; Predicate logic ; Rules of inference ; Sequents ; Traffic control</subject><ispartof>Journal of philosophical logic, 2008-12, Vol.37 (6), p.521-548</ispartof><rights>Springer Science + Business Media B.V. 2008</rights><rights>Springer Science+Business Media B.V. 2008</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-93955339ba2408241ef93239da87418dc066ac7217edf8daa02d6ae482d0fc053</citedby><cites>FETCH-LOGICAL-c367t-93955339ba2408241ef93239da87418dc066ac7217edf8daa02d6ae482d0fc053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41217853$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41217853$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,27924,27925,41488,42557,51319,58017,58250</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20834203$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Borisavljevi, Mirjana</creatorcontrib><title>NORMAL DERIVATIONS AND SEQUENT DERIVATIONS</title><title>Journal of philosophical logic</title><addtitle>J Philos Logic</addtitle><description>The well-known picture that sequent derivations without cuts and normal derivations "are the same" will be changed. Sequent derivations without maximum cuts (i.e. special cuts which correspond to maximum segments from natural deduction) will be considered. It will be shown that the natural deduction image of a sequent derivation without maximum cuts is a normal derivation, and the sequent image of a normal derivation is a derivation without maximum cuts. The main consequence of that property will be that sequent derivations without maximum cuts and normal derivations "are the same".</description><subject>Archives & records</subject><subject>Cut elimination theorem</subject><subject>Education</subject><subject>Logic</subject><subject>Logical proofs</subject><subject>Logical theorems</subject><subject>Mathematical logic</subject><subject>Mathematical theorems</subject><subject>Natural deduction calculus</subject><subject>Philosophical logics. Philosophy of language</subject><subject>Philosophy</subject><subject>Predicate logic</subject><subject>Rules of inference</subject><subject>Sequents</subject><subject>Traffic control</subject><issn>0022-3611</issn><issn>1573-0433</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AIMQZ</sourceid><sourceid>AVQMV</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>K50</sourceid><sourceid>M1D</sourceid><sourceid>M2O</sourceid><recordid>eNp9kM1KAzEURoMoWKsP4EIoghshem-SmUmWgx21UKfYH7chZjLSUjs1aRe-vSlTSleuAsn5Tu79CLlGeECA7DEgKMUogKQKpKDihHQwyTgFwfkp6QAwRnmKeE4uQlhABJFnHXJfjsZv-bDXL8aDj3w6GJWTXl72e5PifVaU0-P7S3JWm2VwV_uzS2bPxfTplQ5HL4OnfEgtT7MNVVwlCefq0zABkgl0teKMq8rITKCsLKSpsRnDzFW1rIwBVqXGCckqqC0kvEtuW-_aNz9bFzZ60Wz9Kn6pUSVSyRRkhLCFrG9C8K7Waz__Nv5XI-hdI7ptRMdF9a4RLWLmbi82wZpl7c3KzsMhyKJWMOCRYy0X4tPqy_mjAf6R37ShRdg0_iAVGBeVsY8_oM5zuQ</recordid><startdate>20081201</startdate><enddate>20081201</enddate><creator>Borisavljevi, Mirjana</creator><general>Springer</general><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8FK</scope><scope>8G5</scope><scope>AABKS</scope><scope>ABSDQ</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AIMQZ</scope><scope>AVQMV</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GB0</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K50</scope><scope>LIQON</scope><scope>M1D</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20081201</creationdate><title>NORMAL DERIVATIONS AND SEQUENT DERIVATIONS</title><author>Borisavljevi, Mirjana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-93955339ba2408241ef93239da87418dc066ac7217edf8daa02d6ae482d0fc053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Archives & records</topic><topic>Cut elimination theorem</topic><topic>Education</topic><topic>Logic</topic><topic>Logical proofs</topic><topic>Logical theorems</topic><topic>Mathematical logic</topic><topic>Mathematical theorems</topic><topic>Natural deduction calculus</topic><topic>Philosophical logics. Philosophy of language</topic><topic>Philosophy</topic><topic>Predicate logic</topic><topic>Rules of inference</topic><topic>Sequents</topic><topic>Traffic control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Borisavljevi, Mirjana</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Philosophy Collection</collection><collection>Philosophy Database</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest One Literature</collection><collection>Arts Premium Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>DELNET Social Sciences & Humanities Collection</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Access via Art, Design & Architecture Collection (ProQuest)</collection><collection>ProQuest One Literature - U.S. Customers Only</collection><collection>Arts & Humanities Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of philosophical logic</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Borisavljevi, Mirjana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NORMAL DERIVATIONS AND SEQUENT DERIVATIONS</atitle><jtitle>Journal of philosophical logic</jtitle><stitle>J Philos Logic</stitle><date>2008-12-01</date><risdate>2008</risdate><volume>37</volume><issue>6</issue><spage>521</spage><epage>548</epage><pages>521-548</pages><issn>0022-3611</issn><eissn>1573-0433</eissn><abstract>The well-known picture that sequent derivations without cuts and normal derivations "are the same" will be changed. Sequent derivations without maximum cuts (i.e. special cuts which correspond to maximum segments from natural deduction) will be considered. It will be shown that the natural deduction image of a sequent derivation without maximum cuts is a normal derivation, and the sequent image of a normal derivation is a derivation without maximum cuts. The main consequence of that property will be that sequent derivations without maximum cuts and normal derivations "are the same".</abstract><cop>Dordrecht</cop><pub>Springer</pub><doi>10.1007/s10992-008-9084-4</doi><tpages>28</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3611 |
ispartof | Journal of philosophical logic, 2008-12, Vol.37 (6), p.521-548 |
issn | 0022-3611 1573-0433 |
language | eng |
recordid | cdi_proquest_journals_195898608 |
source | SpringerNature Journals; JSTOR Archive Collection A-Z Listing |
subjects | Archives & records Cut elimination theorem Education Logic Logical proofs Logical theorems Mathematical logic Mathematical theorems Natural deduction calculus Philosophical logics. Philosophy of language Philosophy Predicate logic Rules of inference Sequents Traffic control |
title | NORMAL DERIVATIONS AND SEQUENT DERIVATIONS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T08%3A55%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NORMAL%20DERIVATIONS%20AND%20SEQUENT%20DERIVATIONS&rft.jtitle=Journal%20of%20philosophical%20logic&rft.au=Borisavljevi,%20Mirjana&rft.date=2008-12-01&rft.volume=37&rft.issue=6&rft.spage=521&rft.epage=548&rft.pages=521-548&rft.issn=0022-3611&rft.eissn=1573-0433&rft_id=info:doi/10.1007/s10992-008-9084-4&rft_dat=%3Cjstor_proqu%3E41217853%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=195898608&rft_id=info:pmid/&rft_jstor_id=41217853&rfr_iscdi=true |