On multicarrier signals where the PMERPR of a random codeword is asymptotically log n
Multicarrier signals exhibit a large peak-to-mean envelope power ratio (PMEPR). In this correspondence, without using a Gaussian assumption, we derive lower and upper probability bounds for the PMEPR distribution when the number of subcarriers n is large. Even though the worst case PMEPR is of the o...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 2004-05, Vol.50 (5), p.895 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | 895 |
container_title | IEEE transactions on information theory |
container_volume | 50 |
creator | Sharif, Masoud Hassibi, Babak |
description | Multicarrier signals exhibit a large peak-to-mean envelope power ratio (PMEPR). In this correspondence, without using a Gaussian assumption, we derive lower and upper probability bounds for the PMEPR distribution when the number of subcarriers n is large. Even though the worst case PMEPR is of the order of n, the main result is that the PMEPR of a random codeword C = (c1, . . . , cn) is log n with probability approaching one asymptotically, for the following three general cases: i) ci's are independent and identically distributed (i.i.d.) chosen from a complex quadrature amplitude modulation (QAM) constellation in which the real and imaginary part of ci each has i.i.d. and even distribution (not necessarily uniform), ii) ci's are i.i.d. chosen from a phase-shift keying (PSK) constellation where the distribution over the constellation points is invariant under 7r / 2 rotation, and iii) C is chosen uniformly from a complex sphere of dimension n. Based on this result, it is proved that asymptotically, the Varshamov-Gilbert (VG) bound remains the same for codes with PMEPR of less than log n chosen from QAM/PSK constellations. [PERIODICAL ABSTRACT] |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_195896808</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>687371221</sourcerecordid><originalsourceid>FETCH-proquest_journals_1958968083</originalsourceid><addsrcrecordid>eNqNjd8KgjAcRkcUZH_e4Uf3gitn23UY3UQSdS1Dp07mZpsivn0KPUBXHwcO51sgDxNy9llEwiXyggBTn4UhXaONc_WEIcFHD70fGppedTLj1kphwclSc-VgqIQV0FUCknv8TJ5gCuBguc5NA5nJxWBsDtIBd2PTdmYuKDWCMiXoHVoVU0Tsf7tFh2v8utz81ppPL1yX1qa380-KGaEsogE9_SV9ARghQVk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195896808</pqid></control><display><type>article</type><title>On multicarrier signals where the PMERPR of a random codeword is asymptotically log n</title><source>IEEE Xplore</source><creator>Sharif, Masoud ; Hassibi, Babak</creator><creatorcontrib>Sharif, Masoud ; Hassibi, Babak</creatorcontrib><description>Multicarrier signals exhibit a large peak-to-mean envelope power ratio (PMEPR). In this correspondence, without using a Gaussian assumption, we derive lower and upper probability bounds for the PMEPR distribution when the number of subcarriers n is large. Even though the worst case PMEPR is of the order of n, the main result is that the PMEPR of a random codeword C = (c1, . . . , cn) is log n with probability approaching one asymptotically, for the following three general cases: i) ci's are independent and identically distributed (i.i.d.) chosen from a complex quadrature amplitude modulation (QAM) constellation in which the real and imaginary part of ci each has i.i.d. and even distribution (not necessarily uniform), ii) ci's are i.i.d. chosen from a phase-shift keying (PSK) constellation where the distribution over the constellation points is invariant under 7r / 2 rotation, and iii) C is chosen uniformly from a complex sphere of dimension n. Based on this result, it is proved that asymptotically, the Varshamov-Gilbert (VG) bound remains the same for codes with PMEPR of less than log n chosen from QAM/PSK constellations. [PERIODICAL ABSTRACT]</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</publisher><subject>Codes ; Communication channels ; Information systems</subject><ispartof>IEEE transactions on information theory, 2004-05, Vol.50 (5), p.895</ispartof><rights>Copyright Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids></links><search><creatorcontrib>Sharif, Masoud</creatorcontrib><creatorcontrib>Hassibi, Babak</creatorcontrib><title>On multicarrier signals where the PMERPR of a random codeword is asymptotically log n</title><title>IEEE transactions on information theory</title><description>Multicarrier signals exhibit a large peak-to-mean envelope power ratio (PMEPR). In this correspondence, without using a Gaussian assumption, we derive lower and upper probability bounds for the PMEPR distribution when the number of subcarriers n is large. Even though the worst case PMEPR is of the order of n, the main result is that the PMEPR of a random codeword C = (c1, . . . , cn) is log n with probability approaching one asymptotically, for the following three general cases: i) ci's are independent and identically distributed (i.i.d.) chosen from a complex quadrature amplitude modulation (QAM) constellation in which the real and imaginary part of ci each has i.i.d. and even distribution (not necessarily uniform), ii) ci's are i.i.d. chosen from a phase-shift keying (PSK) constellation where the distribution over the constellation points is invariant under 7r / 2 rotation, and iii) C is chosen uniformly from a complex sphere of dimension n. Based on this result, it is proved that asymptotically, the Varshamov-Gilbert (VG) bound remains the same for codes with PMEPR of less than log n chosen from QAM/PSK constellations. [PERIODICAL ABSTRACT]</description><subject>Codes</subject><subject>Communication channels</subject><subject>Information systems</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqNjd8KgjAcRkcUZH_e4Uf3gitn23UY3UQSdS1Dp07mZpsivn0KPUBXHwcO51sgDxNy9llEwiXyggBTn4UhXaONc_WEIcFHD70fGppedTLj1kphwclSc-VgqIQV0FUCknv8TJ5gCuBguc5NA5nJxWBsDtIBd2PTdmYuKDWCMiXoHVoVU0Tsf7tFh2v8utz81ppPL1yX1qa380-KGaEsogE9_SV9ARghQVk</recordid><startdate>20040501</startdate><enddate>20040501</enddate><creator>Sharif, Masoud</creator><creator>Hassibi, Babak</creator><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20040501</creationdate><title>On multicarrier signals where the PMERPR of a random codeword is asymptotically log n</title><author>Sharif, Masoud ; Hassibi, Babak</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_1958968083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Codes</topic><topic>Communication channels</topic><topic>Information systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sharif, Masoud</creatorcontrib><creatorcontrib>Hassibi, Babak</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sharif, Masoud</au><au>Hassibi, Babak</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On multicarrier signals where the PMERPR of a random codeword is asymptotically log n</atitle><jtitle>IEEE transactions on information theory</jtitle><date>2004-05-01</date><risdate>2004</risdate><volume>50</volume><issue>5</issue><spage>895</spage><pages>895-</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>Multicarrier signals exhibit a large peak-to-mean envelope power ratio (PMEPR). In this correspondence, without using a Gaussian assumption, we derive lower and upper probability bounds for the PMEPR distribution when the number of subcarriers n is large. Even though the worst case PMEPR is of the order of n, the main result is that the PMEPR of a random codeword C = (c1, . . . , cn) is log n with probability approaching one asymptotically, for the following three general cases: i) ci's are independent and identically distributed (i.i.d.) chosen from a complex quadrature amplitude modulation (QAM) constellation in which the real and imaginary part of ci each has i.i.d. and even distribution (not necessarily uniform), ii) ci's are i.i.d. chosen from a phase-shift keying (PSK) constellation where the distribution over the constellation points is invariant under 7r / 2 rotation, and iii) C is chosen uniformly from a complex sphere of dimension n. Based on this result, it is proved that asymptotically, the Varshamov-Gilbert (VG) bound remains the same for codes with PMEPR of less than log n chosen from QAM/PSK constellations. [PERIODICAL ABSTRACT]</abstract><cop>New York</cop><pub>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</pub></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9448 |
ispartof | IEEE transactions on information theory, 2004-05, Vol.50 (5), p.895 |
issn | 0018-9448 1557-9654 |
language | eng |
recordid | cdi_proquest_journals_195896808 |
source | IEEE Xplore |
subjects | Codes Communication channels Information systems |
title | On multicarrier signals where the PMERPR of a random codeword is asymptotically log n |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A30%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20multicarrier%20signals%20where%20the%20PMERPR%20of%20a%20random%20codeword%20is%20asymptotically%20log%20n&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Sharif,%20Masoud&rft.date=2004-05-01&rft.volume=50&rft.issue=5&rft.spage=895&rft.pages=895-&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/&rft_dat=%3Cproquest%3E687371221%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=195896808&rft_id=info:pmid/&rfr_iscdi=true |