Orthogonal sets of quadriphase sequences with good correlation properties

A general construction for orthogonal sets of quadriphase sequences based on the sequence family A discovered by Sole (1989), Boztas, Hammons, and Kumar (1992) is presented. The sequence family A is equivalent to the S(0) family that belongs to a chain of sequence families S(i),i=0,1,2,..., m with e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2002-04, Vol.48 (4), p.956-959
Hauptverfasser: Popovic, B.M., Suehiro, N., Fan, P.Z.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 959
container_issue 4
container_start_page 956
container_title IEEE transactions on information theory
container_volume 48
creator Popovic, B.M.
Suehiro, N.
Fan, P.Z.
description A general construction for orthogonal sets of quadriphase sequences based on the sequence family A discovered by Sole (1989), Boztas, Hammons, and Kumar (1992) is presented. The sequence family A is equivalent to the S(0) family that belongs to a chain of sequence families S(i),i=0,1,2,..., m with each family in the chain containing the preceding family. Therefore, a number of orthogonal subsets can be generated for an arbitrary family S(m). The algorithm for an efficient implementation of the bank of correlators corresponding to any orthogonal subset of family S(m) is derived as well.
doi_str_mv 10.1109/18.992797
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_195877042</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>992797</ieee_id><sourcerecordid>28557038</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-c13eb47eb8429ead161c8b88896c7caa5a302658943f4660c4ba35cb448ab85c3</originalsourceid><addsrcrecordid>eNp90D1PwzAQBmALgUQpDKxMEQOCIcWO7fg8ooqPSpW6wBw57qVNlcapnQjx7zFKxcDAZJ3v0fn8EnLN6Iwxqh8ZzLTOlFYnZMKkVKnOpTglE0oZpFoIOCcXIexiKSTLJmSx8v3WbVxrmiRgHxJXJYfBrH3dbU3AeHcYsLUYks-63yYb59aJdd5jY_ratUnnXYe-rzFckrPKNAGvjueUfLw8v8_f0uXqdTF_WqaWc9WnlnEshcISRKbRrFnOLJQAoHOrrDHScJrlErTglchzakVpuLRlXN2UIC2fkrtxbnw67hb6Yl8Hi01jWnRDKDKI36YcIrz_F7JcMZ5pUDzS2z905wYfM4lKS1CKiiyihxFZ70LwWBWdr_fGfxWMFj_hFwyKMfxob0ZbI-KvOza_AUpyfro</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195877042</pqid></control><display><type>article</type><title>Orthogonal sets of quadriphase sequences with good correlation properties</title><source>IEEE Electronic Library (IEL)</source><creator>Popovic, B.M. ; Suehiro, N. ; Fan, P.Z.</creator><creatorcontrib>Popovic, B.M. ; Suehiro, N. ; Fan, P.Z.</creatorcontrib><description>A general construction for orthogonal sets of quadriphase sequences based on the sequence family A discovered by Sole (1989), Boztas, Hammons, and Kumar (1992) is presented. The sequence family A is equivalent to the S(0) family that belongs to a chain of sequence families S(i),i=0,1,2,..., m with each family in the chain containing the preceding family. Therefore, a number of orthogonal subsets can be generated for an arbitrary family S(m). The algorithm for an efficient implementation of the bank of correlators corresponding to any orthogonal subset of family S(m) is derived as well.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/18.992797</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Banks ; Chains ; Code division multiaccess ; Code Division Multiple Access ; Communications systems ; Construction ; Correlation ; Correlation analysis ; Correlators ; Equivalence ; Mathematical models ; Sole</subject><ispartof>IEEE transactions on information theory, 2002-04, Vol.48 (4), p.956-959</ispartof><rights>Copyright Institute of Electrical and Electronics Engineers, Inc. (IEEE) Apr 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-c13eb47eb8429ead161c8b88896c7caa5a302658943f4660c4ba35cb448ab85c3</citedby><cites>FETCH-LOGICAL-c337t-c13eb47eb8429ead161c8b88896c7caa5a302658943f4660c4ba35cb448ab85c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/992797$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/992797$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Popovic, B.M.</creatorcontrib><creatorcontrib>Suehiro, N.</creatorcontrib><creatorcontrib>Fan, P.Z.</creatorcontrib><title>Orthogonal sets of quadriphase sequences with good correlation properties</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>A general construction for orthogonal sets of quadriphase sequences based on the sequence family A discovered by Sole (1989), Boztas, Hammons, and Kumar (1992) is presented. The sequence family A is equivalent to the S(0) family that belongs to a chain of sequence families S(i),i=0,1,2,..., m with each family in the chain containing the preceding family. Therefore, a number of orthogonal subsets can be generated for an arbitrary family S(m). The algorithm for an efficient implementation of the bank of correlators corresponding to any orthogonal subset of family S(m) is derived as well.</description><subject>Algorithms</subject><subject>Banks</subject><subject>Chains</subject><subject>Code division multiaccess</subject><subject>Code Division Multiple Access</subject><subject>Communications systems</subject><subject>Construction</subject><subject>Correlation</subject><subject>Correlation analysis</subject><subject>Correlators</subject><subject>Equivalence</subject><subject>Mathematical models</subject><subject>Sole</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp90D1PwzAQBmALgUQpDKxMEQOCIcWO7fg8ooqPSpW6wBw57qVNlcapnQjx7zFKxcDAZJ3v0fn8EnLN6Iwxqh8ZzLTOlFYnZMKkVKnOpTglE0oZpFoIOCcXIexiKSTLJmSx8v3WbVxrmiRgHxJXJYfBrH3dbU3AeHcYsLUYks-63yYb59aJdd5jY_ratUnnXYe-rzFckrPKNAGvjueUfLw8v8_f0uXqdTF_WqaWc9WnlnEshcISRKbRrFnOLJQAoHOrrDHScJrlErTglchzakVpuLRlXN2UIC2fkrtxbnw67hb6Yl8Hi01jWnRDKDKI36YcIrz_F7JcMZ5pUDzS2z905wYfM4lKS1CKiiyihxFZ70LwWBWdr_fGfxWMFj_hFwyKMfxob0ZbI-KvOza_AUpyfro</recordid><startdate>20020401</startdate><enddate>20020401</enddate><creator>Popovic, B.M.</creator><creator>Suehiro, N.</creator><creator>Fan, P.Z.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20020401</creationdate><title>Orthogonal sets of quadriphase sequences with good correlation properties</title><author>Popovic, B.M. ; Suehiro, N. ; Fan, P.Z.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-c13eb47eb8429ead161c8b88896c7caa5a302658943f4660c4ba35cb448ab85c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Algorithms</topic><topic>Banks</topic><topic>Chains</topic><topic>Code division multiaccess</topic><topic>Code Division Multiple Access</topic><topic>Communications systems</topic><topic>Construction</topic><topic>Correlation</topic><topic>Correlation analysis</topic><topic>Correlators</topic><topic>Equivalence</topic><topic>Mathematical models</topic><topic>Sole</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Popovic, B.M.</creatorcontrib><creatorcontrib>Suehiro, N.</creatorcontrib><creatorcontrib>Fan, P.Z.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Popovic, B.M.</au><au>Suehiro, N.</au><au>Fan, P.Z.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Orthogonal sets of quadriphase sequences with good correlation properties</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2002-04-01</date><risdate>2002</risdate><volume>48</volume><issue>4</issue><spage>956</spage><epage>959</epage><pages>956-959</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>A general construction for orthogonal sets of quadriphase sequences based on the sequence family A discovered by Sole (1989), Boztas, Hammons, and Kumar (1992) is presented. The sequence family A is equivalent to the S(0) family that belongs to a chain of sequence families S(i),i=0,1,2,..., m with each family in the chain containing the preceding family. Therefore, a number of orthogonal subsets can be generated for an arbitrary family S(m). The algorithm for an efficient implementation of the bank of correlators corresponding to any orthogonal subset of family S(m) is derived as well.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/18.992797</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9448
ispartof IEEE transactions on information theory, 2002-04, Vol.48 (4), p.956-959
issn 0018-9448
1557-9654
language eng
recordid cdi_proquest_journals_195877042
source IEEE Electronic Library (IEL)
subjects Algorithms
Banks
Chains
Code division multiaccess
Code Division Multiple Access
Communications systems
Construction
Correlation
Correlation analysis
Correlators
Equivalence
Mathematical models
Sole
title Orthogonal sets of quadriphase sequences with good correlation properties
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T22%3A46%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Orthogonal%20sets%20of%20quadriphase%20sequences%20with%20good%20correlation%20properties&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Popovic,%20B.M.&rft.date=2002-04-01&rft.volume=48&rft.issue=4&rft.spage=956&rft.epage=959&rft.pages=956-959&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/18.992797&rft_dat=%3Cproquest_RIE%3E28557038%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=195877042&rft_id=info:pmid/&rft_ieee_id=992797&rfr_iscdi=true