Scalar versus vector quantization: worst case analysis

We study the potential merits of vector quantization and show that there can be an arbitrary discrepancy between the worst case rates required for scalar and vector quantization. Specifically, we describe a random variable and a distortion measure where quantization of a single instance to within a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2002-06, Vol.48 (6), p.1393-1409
1. Verfasser: Orlitsky, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1409
container_issue 6
container_start_page 1393
container_title IEEE transactions on information theory
container_volume 48
creator Orlitsky, A.
description We study the potential merits of vector quantization and show that there can be an arbitrary discrepancy between the worst case rates required for scalar and vector quantization. Specifically, we describe a random variable and a distortion measure where quantization of a single instance to within a given distortion requires an arbitrarily large number of bits in the worst case, but quantization of multiple independent instances to within the same distortion requires an arbitrarily small number of bits per instance in the worst case. We relate this discrepancy to expander graphs, representation- and cover-numbers of set systems, and a problem studied by Slepian, Wolf, and Wyner (1973).
doi_str_mv 10.1109/TIT.2002.1003829
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_195875717</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1003829</ieee_id><sourcerecordid>28602661</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-8c67bc3dc9ec0c9e6841c338ed46e9aa92fc676255e856553702eecb735392a33</originalsourceid><addsrcrecordid>eNp90DtLA0EQB_BFFIzRXrA5LMTm4j5uX3YSfAQCFsZ62WwmcOFyl-zcKcmnd8OlEAubHZb5zcD8CblmdMQYtQ-zyWzEKeUjRqkw3J6QAZNS51bJ4pQMKGUmt0VhzskF4ip9C8n4gKiP4Csfsy-I2GEqoW1itu183ZZ735ZN_Zh9NxHbLHiEzNe-2mGJl-Rs6SuEq2Mdks-X59n4LZ--v07GT9M8CMnb3ASl50EsgoVA06NMwYIQBhaFAuu95cskFJcSjFRSCk05QJhrIYXlXoghuev3bmKz7QBbty4xQFX5GpoOHTeKcqVYgvf_QqY048YayRO9_UNXTRfTYUlZabTUTCdEexRigxhh6TaxXPu4c4y6Q-AuBe4Ogbtj4Gnkph8pAeAX77s_RIJ6ng</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195875717</pqid></control><display><type>article</type><title>Scalar versus vector quantization: worst case analysis</title><source>IEEE Electronic Library (IEL)</source><creator>Orlitsky, A.</creator><creatorcontrib>Orlitsky, A.</creatorcontrib><description>We study the potential merits of vector quantization and show that there can be an arbitrary discrepancy between the worst case rates required for scalar and vector quantization. Specifically, we describe a random variable and a distortion measure where quantization of a single instance to within a given distortion requires an arbitrarily large number of bits in the worst case, but quantization of multiple independent instances to within the same distortion requires an arbitrarily small number of bits per instance in the worst case. We relate this discrepancy to expander graphs, representation- and cover-numbers of set systems, and a problem studied by Slepian, Wolf, and Wyner (1973).</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2002.1003829</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Distortion ; Graph theory ; Graphs ; Information ; Information theory ; Quantization ; Random variables ; Rate distortion theory ; Scalars ; Stochastic processes ; Theory ; Vector quantization</subject><ispartof>IEEE transactions on information theory, 2002-06, Vol.48 (6), p.1393-1409</ispartof><rights>Copyright Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-8c67bc3dc9ec0c9e6841c338ed46e9aa92fc676255e856553702eecb735392a33</citedby><cites>FETCH-LOGICAL-c352t-8c67bc3dc9ec0c9e6841c338ed46e9aa92fc676255e856553702eecb735392a33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1003829$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1003829$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Orlitsky, A.</creatorcontrib><title>Scalar versus vector quantization: worst case analysis</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>We study the potential merits of vector quantization and show that there can be an arbitrary discrepancy between the worst case rates required for scalar and vector quantization. Specifically, we describe a random variable and a distortion measure where quantization of a single instance to within a given distortion requires an arbitrarily large number of bits in the worst case, but quantization of multiple independent instances to within the same distortion requires an arbitrarily small number of bits per instance in the worst case. We relate this discrepancy to expander graphs, representation- and cover-numbers of set systems, and a problem studied by Slepian, Wolf, and Wyner (1973).</description><subject>Distortion</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Information</subject><subject>Information theory</subject><subject>Quantization</subject><subject>Random variables</subject><subject>Rate distortion theory</subject><subject>Scalars</subject><subject>Stochastic processes</subject><subject>Theory</subject><subject>Vector quantization</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp90DtLA0EQB_BFFIzRXrA5LMTm4j5uX3YSfAQCFsZ62WwmcOFyl-zcKcmnd8OlEAubHZb5zcD8CblmdMQYtQ-zyWzEKeUjRqkw3J6QAZNS51bJ4pQMKGUmt0VhzskF4ip9C8n4gKiP4Csfsy-I2GEqoW1itu183ZZ735ZN_Zh9NxHbLHiEzNe-2mGJl-Rs6SuEq2Mdks-X59n4LZ--v07GT9M8CMnb3ASl50EsgoVA06NMwYIQBhaFAuu95cskFJcSjFRSCk05QJhrIYXlXoghuev3bmKz7QBbty4xQFX5GpoOHTeKcqVYgvf_QqY048YayRO9_UNXTRfTYUlZabTUTCdEexRigxhh6TaxXPu4c4y6Q-AuBe4Ogbtj4Gnkph8pAeAX77s_RIJ6ng</recordid><startdate>20020601</startdate><enddate>20020601</enddate><creator>Orlitsky, A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20020601</creationdate><title>Scalar versus vector quantization: worst case analysis</title><author>Orlitsky, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-8c67bc3dc9ec0c9e6841c338ed46e9aa92fc676255e856553702eecb735392a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Distortion</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Information</topic><topic>Information theory</topic><topic>Quantization</topic><topic>Random variables</topic><topic>Rate distortion theory</topic><topic>Scalars</topic><topic>Stochastic processes</topic><topic>Theory</topic><topic>Vector quantization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Orlitsky, A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Orlitsky, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scalar versus vector quantization: worst case analysis</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2002-06-01</date><risdate>2002</risdate><volume>48</volume><issue>6</issue><spage>1393</spage><epage>1409</epage><pages>1393-1409</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>We study the potential merits of vector quantization and show that there can be an arbitrary discrepancy between the worst case rates required for scalar and vector quantization. Specifically, we describe a random variable and a distortion measure where quantization of a single instance to within a given distortion requires an arbitrarily large number of bits in the worst case, but quantization of multiple independent instances to within the same distortion requires an arbitrarily small number of bits per instance in the worst case. We relate this discrepancy to expander graphs, representation- and cover-numbers of set systems, and a problem studied by Slepian, Wolf, and Wyner (1973).</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIT.2002.1003829</doi><tpages>17</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9448
ispartof IEEE transactions on information theory, 2002-06, Vol.48 (6), p.1393-1409
issn 0018-9448
1557-9654
language eng
recordid cdi_proquest_journals_195875717
source IEEE Electronic Library (IEL)
subjects Distortion
Graph theory
Graphs
Information
Information theory
Quantization
Random variables
Rate distortion theory
Scalars
Stochastic processes
Theory
Vector quantization
title Scalar versus vector quantization: worst case analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T16%3A49%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scalar%20versus%20vector%20quantization:%20worst%20case%20analysis&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Orlitsky,%20A.&rft.date=2002-06-01&rft.volume=48&rft.issue=6&rft.spage=1393&rft.epage=1409&rft.pages=1393-1409&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2002.1003829&rft_dat=%3Cproquest_RIE%3E28602661%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=195875717&rft_id=info:pmid/&rft_ieee_id=1003829&rfr_iscdi=true