Scalar versus vector quantization: worst case analysis
We study the potential merits of vector quantization and show that there can be an arbitrary discrepancy between the worst case rates required for scalar and vector quantization. Specifically, we describe a random variable and a distortion measure where quantization of a single instance to within a...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 2002-06, Vol.48 (6), p.1393-1409 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1409 |
---|---|
container_issue | 6 |
container_start_page | 1393 |
container_title | IEEE transactions on information theory |
container_volume | 48 |
creator | Orlitsky, A. |
description | We study the potential merits of vector quantization and show that there can be an arbitrary discrepancy between the worst case rates required for scalar and vector quantization. Specifically, we describe a random variable and a distortion measure where quantization of a single instance to within a given distortion requires an arbitrarily large number of bits in the worst case, but quantization of multiple independent instances to within the same distortion requires an arbitrarily small number of bits per instance in the worst case. We relate this discrepancy to expander graphs, representation- and cover-numbers of set systems, and a problem studied by Slepian, Wolf, and Wyner (1973). |
doi_str_mv | 10.1109/TIT.2002.1003829 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_195875717</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1003829</ieee_id><sourcerecordid>28602661</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-8c67bc3dc9ec0c9e6841c338ed46e9aa92fc676255e856553702eecb735392a33</originalsourceid><addsrcrecordid>eNp90DtLA0EQB_BFFIzRXrA5LMTm4j5uX3YSfAQCFsZ62WwmcOFyl-zcKcmnd8OlEAubHZb5zcD8CblmdMQYtQ-zyWzEKeUjRqkw3J6QAZNS51bJ4pQMKGUmt0VhzskF4ip9C8n4gKiP4Csfsy-I2GEqoW1itu183ZZ735ZN_Zh9NxHbLHiEzNe-2mGJl-Rs6SuEq2Mdks-X59n4LZ--v07GT9M8CMnb3ASl50EsgoVA06NMwYIQBhaFAuu95cskFJcSjFRSCk05QJhrIYXlXoghuev3bmKz7QBbty4xQFX5GpoOHTeKcqVYgvf_QqY048YayRO9_UNXTRfTYUlZabTUTCdEexRigxhh6TaxXPu4c4y6Q-AuBe4Ogbtj4Gnkph8pAeAX77s_RIJ6ng</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195875717</pqid></control><display><type>article</type><title>Scalar versus vector quantization: worst case analysis</title><source>IEEE Electronic Library (IEL)</source><creator>Orlitsky, A.</creator><creatorcontrib>Orlitsky, A.</creatorcontrib><description>We study the potential merits of vector quantization and show that there can be an arbitrary discrepancy between the worst case rates required for scalar and vector quantization. Specifically, we describe a random variable and a distortion measure where quantization of a single instance to within a given distortion requires an arbitrarily large number of bits in the worst case, but quantization of multiple independent instances to within the same distortion requires an arbitrarily small number of bits per instance in the worst case. We relate this discrepancy to expander graphs, representation- and cover-numbers of set systems, and a problem studied by Slepian, Wolf, and Wyner (1973).</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2002.1003829</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Distortion ; Graph theory ; Graphs ; Information ; Information theory ; Quantization ; Random variables ; Rate distortion theory ; Scalars ; Stochastic processes ; Theory ; Vector quantization</subject><ispartof>IEEE transactions on information theory, 2002-06, Vol.48 (6), p.1393-1409</ispartof><rights>Copyright Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-8c67bc3dc9ec0c9e6841c338ed46e9aa92fc676255e856553702eecb735392a33</citedby><cites>FETCH-LOGICAL-c352t-8c67bc3dc9ec0c9e6841c338ed46e9aa92fc676255e856553702eecb735392a33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1003829$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1003829$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Orlitsky, A.</creatorcontrib><title>Scalar versus vector quantization: worst case analysis</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>We study the potential merits of vector quantization and show that there can be an arbitrary discrepancy between the worst case rates required for scalar and vector quantization. Specifically, we describe a random variable and a distortion measure where quantization of a single instance to within a given distortion requires an arbitrarily large number of bits in the worst case, but quantization of multiple independent instances to within the same distortion requires an arbitrarily small number of bits per instance in the worst case. We relate this discrepancy to expander graphs, representation- and cover-numbers of set systems, and a problem studied by Slepian, Wolf, and Wyner (1973).</description><subject>Distortion</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Information</subject><subject>Information theory</subject><subject>Quantization</subject><subject>Random variables</subject><subject>Rate distortion theory</subject><subject>Scalars</subject><subject>Stochastic processes</subject><subject>Theory</subject><subject>Vector quantization</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp90DtLA0EQB_BFFIzRXrA5LMTm4j5uX3YSfAQCFsZ62WwmcOFyl-zcKcmnd8OlEAubHZb5zcD8CblmdMQYtQ-zyWzEKeUjRqkw3J6QAZNS51bJ4pQMKGUmt0VhzskF4ip9C8n4gKiP4Csfsy-I2GEqoW1itu183ZZ735ZN_Zh9NxHbLHiEzNe-2mGJl-Rs6SuEq2Mdks-X59n4LZ--v07GT9M8CMnb3ASl50EsgoVA06NMwYIQBhaFAuu95cskFJcSjFRSCk05QJhrIYXlXoghuev3bmKz7QBbty4xQFX5GpoOHTeKcqVYgvf_QqY048YayRO9_UNXTRfTYUlZabTUTCdEexRigxhh6TaxXPu4c4y6Q-AuBe4Ogbtj4Gnkph8pAeAX77s_RIJ6ng</recordid><startdate>20020601</startdate><enddate>20020601</enddate><creator>Orlitsky, A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20020601</creationdate><title>Scalar versus vector quantization: worst case analysis</title><author>Orlitsky, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-8c67bc3dc9ec0c9e6841c338ed46e9aa92fc676255e856553702eecb735392a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Distortion</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Information</topic><topic>Information theory</topic><topic>Quantization</topic><topic>Random variables</topic><topic>Rate distortion theory</topic><topic>Scalars</topic><topic>Stochastic processes</topic><topic>Theory</topic><topic>Vector quantization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Orlitsky, A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Orlitsky, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scalar versus vector quantization: worst case analysis</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2002-06-01</date><risdate>2002</risdate><volume>48</volume><issue>6</issue><spage>1393</spage><epage>1409</epage><pages>1393-1409</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>We study the potential merits of vector quantization and show that there can be an arbitrary discrepancy between the worst case rates required for scalar and vector quantization. Specifically, we describe a random variable and a distortion measure where quantization of a single instance to within a given distortion requires an arbitrarily large number of bits in the worst case, but quantization of multiple independent instances to within the same distortion requires an arbitrarily small number of bits per instance in the worst case. We relate this discrepancy to expander graphs, representation- and cover-numbers of set systems, and a problem studied by Slepian, Wolf, and Wyner (1973).</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIT.2002.1003829</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9448 |
ispartof | IEEE transactions on information theory, 2002-06, Vol.48 (6), p.1393-1409 |
issn | 0018-9448 1557-9654 |
language | eng |
recordid | cdi_proquest_journals_195875717 |
source | IEEE Electronic Library (IEL) |
subjects | Distortion Graph theory Graphs Information Information theory Quantization Random variables Rate distortion theory Scalars Stochastic processes Theory Vector quantization |
title | Scalar versus vector quantization: worst case analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T16%3A49%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scalar%20versus%20vector%20quantization:%20worst%20case%20analysis&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Orlitsky,%20A.&rft.date=2002-06-01&rft.volume=48&rft.issue=6&rft.spage=1393&rft.epage=1409&rft.pages=1393-1409&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2002.1003829&rft_dat=%3Cproquest_RIE%3E28602661%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=195875717&rft_id=info:pmid/&rft_ieee_id=1003829&rfr_iscdi=true |