Multishelled CaO Microspheres Stabilized by Atomic Layer Deposition of Al2O3 for Enhanced CO2 Capture Performance
CO2 capture and storage is a promising concept to reduce anthropogenic CO2 emissions. The most established technology for capturing CO2 relies on amine scrubbing that is, however, associated with high costs. Technoeconomic studies show that using CaO as a high‐temperature CO2 sorbent can significant...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2017-11, Vol.29 (41), p.n/a |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 41 |
container_start_page | |
container_title | Advanced materials (Weinheim) |
container_volume | 29 |
creator | Armutlulu, Andac Naeem, Muhammad Awais Liu, Hsueh‐Ju Kim, Sung Min Kierzkowska, Agnieszka Fedorov, Alexey Müller, Christoph R. |
description | CO2 capture and storage is a promising concept to reduce anthropogenic CO2 emissions. The most established technology for capturing CO2 relies on amine scrubbing that is, however, associated with high costs. Technoeconomic studies show that using CaO as a high‐temperature CO2 sorbent can significantly reduce the costs of CO2 capture. A serious disadvantage of CaO derived from earth‐abundant precursors, e.g., limestone, is the rapid, sintering‐induced decay of its cyclic CO2 uptake. Here, a template‐assisted hydrothermal approach to develop CaO‐based sorbents exhibiting a very high and cyclically stable CO2 uptake is exploited. The morphological characteristics of these sorbents, i.e., a porous shell comprised of CaO nanoparticles coated by a thin layer of Al2O3 ( |
doi_str_mv | 10.1002/adma.201702896 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_1958731016</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1958731016</sourcerecordid><originalsourceid>FETCH-LOGICAL-g2706-581ea9aee971690a91c6ff312b826d9f4ab093ad44861c371a03fddc25d5d5143</originalsourceid><addsrcrecordid>eNo9kN1LwzAUxYMoOKevPgd87sxN2rR5LNv8gI0K6nNI29RltE2XtEj9621Rxn24XH6HczkHoXsgKyCEPqqyUStKICY0EfwCLSCiEIRERJdoQQSLAsHD5BrdeH8khAhO-AKd9kPdG3_Qda1LvFYZ3pvCWd8dtNMev_cqN7X5mVg-4rS3jSnwTo3a4Y3urDe9sS22FU5rmjFcWYe37UG1xWyW0cmw6wen8Zt2E2tmcIuuKlV7ffe_l-jzafuxfgl22fPrOt0FXzQmPIgS0EoorUUMXBAloOBVxYDmCeWlqEKVT5lUGYYJh4LFoAiryrKgUTkNhGyJHv58O2dPg_a9PNrBtdNLCSJKYgYE-KQSf6pvU-tRds40yo0SiJw7lXOn8typTDf79HyxX3bIbLs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1958731016</pqid></control><display><type>article</type><title>Multishelled CaO Microspheres Stabilized by Atomic Layer Deposition of Al2O3 for Enhanced CO2 Capture Performance</title><source>Wiley Online Library All Journals</source><creator>Armutlulu, Andac ; Naeem, Muhammad Awais ; Liu, Hsueh‐Ju ; Kim, Sung Min ; Kierzkowska, Agnieszka ; Fedorov, Alexey ; Müller, Christoph R.</creator><creatorcontrib>Armutlulu, Andac ; Naeem, Muhammad Awais ; Liu, Hsueh‐Ju ; Kim, Sung Min ; Kierzkowska, Agnieszka ; Fedorov, Alexey ; Müller, Christoph R.</creatorcontrib><description>CO2 capture and storage is a promising concept to reduce anthropogenic CO2 emissions. The most established technology for capturing CO2 relies on amine scrubbing that is, however, associated with high costs. Technoeconomic studies show that using CaO as a high‐temperature CO2 sorbent can significantly reduce the costs of CO2 capture. A serious disadvantage of CaO derived from earth‐abundant precursors, e.g., limestone, is the rapid, sintering‐induced decay of its cyclic CO2 uptake. Here, a template‐assisted hydrothermal approach to develop CaO‐based sorbents exhibiting a very high and cyclically stable CO2 uptake is exploited. The morphological characteristics of these sorbents, i.e., a porous shell comprised of CaO nanoparticles coated by a thin layer of Al2O3 (<3 nm) containing a central void, ensure (i) minimal diffusion limitations, (ii) space to accompany the substantial volumetric changes during CO2 capture and release, and (iii) a minimal quantity of Al2O3 for structural stabilization, thus maximizing the fraction of CO2‐capture‐active CaO.
CaO‐based CO2 sorbents featuring a high CO2 uptake (0.55 gCO2 gsorbent−1) are developed via a template‐assisted synthesis approach. The highly porous, nanostructured multishelled morphology is stabilized by an ultrathin film of Al2O3 grown by atomic layer deposition. The capacity retention is 89.9% after 30 operation cycles.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.201702896</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Aluminum oxide ; atomic layer deposition ; Atomic layer epitaxy ; calcium oxide ; Carbon dioxide ; Carbon sequestration ; carbon template ; CO2 sorbents ; Limestone ; Materials science ; Microspheres ; multishelled structures ; Sintering (powder metallurgy) ; Sorbents ; Washing</subject><ispartof>Advanced materials (Weinheim), 2017-11, Vol.29 (41), p.n/a</ispartof><rights>2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-2234-6902</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.201702896$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.201702896$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Armutlulu, Andac</creatorcontrib><creatorcontrib>Naeem, Muhammad Awais</creatorcontrib><creatorcontrib>Liu, Hsueh‐Ju</creatorcontrib><creatorcontrib>Kim, Sung Min</creatorcontrib><creatorcontrib>Kierzkowska, Agnieszka</creatorcontrib><creatorcontrib>Fedorov, Alexey</creatorcontrib><creatorcontrib>Müller, Christoph R.</creatorcontrib><title>Multishelled CaO Microspheres Stabilized by Atomic Layer Deposition of Al2O3 for Enhanced CO2 Capture Performance</title><title>Advanced materials (Weinheim)</title><description>CO2 capture and storage is a promising concept to reduce anthropogenic CO2 emissions. The most established technology for capturing CO2 relies on amine scrubbing that is, however, associated with high costs. Technoeconomic studies show that using CaO as a high‐temperature CO2 sorbent can significantly reduce the costs of CO2 capture. A serious disadvantage of CaO derived from earth‐abundant precursors, e.g., limestone, is the rapid, sintering‐induced decay of its cyclic CO2 uptake. Here, a template‐assisted hydrothermal approach to develop CaO‐based sorbents exhibiting a very high and cyclically stable CO2 uptake is exploited. The morphological characteristics of these sorbents, i.e., a porous shell comprised of CaO nanoparticles coated by a thin layer of Al2O3 (<3 nm) containing a central void, ensure (i) minimal diffusion limitations, (ii) space to accompany the substantial volumetric changes during CO2 capture and release, and (iii) a minimal quantity of Al2O3 for structural stabilization, thus maximizing the fraction of CO2‐capture‐active CaO.
CaO‐based CO2 sorbents featuring a high CO2 uptake (0.55 gCO2 gsorbent−1) are developed via a template‐assisted synthesis approach. The highly porous, nanostructured multishelled morphology is stabilized by an ultrathin film of Al2O3 grown by atomic layer deposition. The capacity retention is 89.9% after 30 operation cycles.</description><subject>Aluminum oxide</subject><subject>atomic layer deposition</subject><subject>Atomic layer epitaxy</subject><subject>calcium oxide</subject><subject>Carbon dioxide</subject><subject>Carbon sequestration</subject><subject>carbon template</subject><subject>CO2 sorbents</subject><subject>Limestone</subject><subject>Materials science</subject><subject>Microspheres</subject><subject>multishelled structures</subject><subject>Sintering (powder metallurgy)</subject><subject>Sorbents</subject><subject>Washing</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo9kN1LwzAUxYMoOKevPgd87sxN2rR5LNv8gI0K6nNI29RltE2XtEj9621Rxn24XH6HczkHoXsgKyCEPqqyUStKICY0EfwCLSCiEIRERJdoQQSLAsHD5BrdeH8khAhO-AKd9kPdG3_Qda1LvFYZ3pvCWd8dtNMev_cqN7X5mVg-4rS3jSnwTo3a4Y3urDe9sS22FU5rmjFcWYe37UG1xWyW0cmw6wen8Zt2E2tmcIuuKlV7ffe_l-jzafuxfgl22fPrOt0FXzQmPIgS0EoorUUMXBAloOBVxYDmCeWlqEKVT5lUGYYJh4LFoAiryrKgUTkNhGyJHv58O2dPg_a9PNrBtdNLCSJKYgYE-KQSf6pvU-tRds40yo0SiJw7lXOn8typTDf79HyxX3bIbLs</recordid><startdate>20171106</startdate><enddate>20171106</enddate><creator>Armutlulu, Andac</creator><creator>Naeem, Muhammad Awais</creator><creator>Liu, Hsueh‐Ju</creator><creator>Kim, Sung Min</creator><creator>Kierzkowska, Agnieszka</creator><creator>Fedorov, Alexey</creator><creator>Müller, Christoph R.</creator><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-2234-6902</orcidid></search><sort><creationdate>20171106</creationdate><title>Multishelled CaO Microspheres Stabilized by Atomic Layer Deposition of Al2O3 for Enhanced CO2 Capture Performance</title><author>Armutlulu, Andac ; Naeem, Muhammad Awais ; Liu, Hsueh‐Ju ; Kim, Sung Min ; Kierzkowska, Agnieszka ; Fedorov, Alexey ; Müller, Christoph R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g2706-581ea9aee971690a91c6ff312b826d9f4ab093ad44861c371a03fddc25d5d5143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aluminum oxide</topic><topic>atomic layer deposition</topic><topic>Atomic layer epitaxy</topic><topic>calcium oxide</topic><topic>Carbon dioxide</topic><topic>Carbon sequestration</topic><topic>carbon template</topic><topic>CO2 sorbents</topic><topic>Limestone</topic><topic>Materials science</topic><topic>Microspheres</topic><topic>multishelled structures</topic><topic>Sintering (powder metallurgy)</topic><topic>Sorbents</topic><topic>Washing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Armutlulu, Andac</creatorcontrib><creatorcontrib>Naeem, Muhammad Awais</creatorcontrib><creatorcontrib>Liu, Hsueh‐Ju</creatorcontrib><creatorcontrib>Kim, Sung Min</creatorcontrib><creatorcontrib>Kierzkowska, Agnieszka</creatorcontrib><creatorcontrib>Fedorov, Alexey</creatorcontrib><creatorcontrib>Müller, Christoph R.</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Armutlulu, Andac</au><au>Naeem, Muhammad Awais</au><au>Liu, Hsueh‐Ju</au><au>Kim, Sung Min</au><au>Kierzkowska, Agnieszka</au><au>Fedorov, Alexey</au><au>Müller, Christoph R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multishelled CaO Microspheres Stabilized by Atomic Layer Deposition of Al2O3 for Enhanced CO2 Capture Performance</atitle><jtitle>Advanced materials (Weinheim)</jtitle><date>2017-11-06</date><risdate>2017</risdate><volume>29</volume><issue>41</issue><epage>n/a</epage><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>CO2 capture and storage is a promising concept to reduce anthropogenic CO2 emissions. The most established technology for capturing CO2 relies on amine scrubbing that is, however, associated with high costs. Technoeconomic studies show that using CaO as a high‐temperature CO2 sorbent can significantly reduce the costs of CO2 capture. A serious disadvantage of CaO derived from earth‐abundant precursors, e.g., limestone, is the rapid, sintering‐induced decay of its cyclic CO2 uptake. Here, a template‐assisted hydrothermal approach to develop CaO‐based sorbents exhibiting a very high and cyclically stable CO2 uptake is exploited. The morphological characteristics of these sorbents, i.e., a porous shell comprised of CaO nanoparticles coated by a thin layer of Al2O3 (<3 nm) containing a central void, ensure (i) minimal diffusion limitations, (ii) space to accompany the substantial volumetric changes during CO2 capture and release, and (iii) a minimal quantity of Al2O3 for structural stabilization, thus maximizing the fraction of CO2‐capture‐active CaO.
CaO‐based CO2 sorbents featuring a high CO2 uptake (0.55 gCO2 gsorbent−1) are developed via a template‐assisted synthesis approach. The highly porous, nanostructured multishelled morphology is stabilized by an ultrathin film of Al2O3 grown by atomic layer deposition. The capacity retention is 89.9% after 30 operation cycles.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adma.201702896</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-2234-6902</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2017-11, Vol.29 (41), p.n/a |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_proquest_journals_1958731016 |
source | Wiley Online Library All Journals |
subjects | Aluminum oxide atomic layer deposition Atomic layer epitaxy calcium oxide Carbon dioxide Carbon sequestration carbon template CO2 sorbents Limestone Materials science Microspheres multishelled structures Sintering (powder metallurgy) Sorbents Washing |
title | Multishelled CaO Microspheres Stabilized by Atomic Layer Deposition of Al2O3 for Enhanced CO2 Capture Performance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T23%3A15%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multishelled%20CaO%20Microspheres%20Stabilized%20by%20Atomic%20Layer%20Deposition%20of%20Al2O3%20for%20Enhanced%20CO2%20Capture%20Performance&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Armutlulu,%20Andac&rft.date=2017-11-06&rft.volume=29&rft.issue=41&rft.epage=n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.201702896&rft_dat=%3Cproquest_wiley%3E1958731016%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1958731016&rft_id=info:pmid/&rfr_iscdi=true |