Multishelled CaO Microspheres Stabilized by Atomic Layer Deposition of Al2O3 for Enhanced CO2 Capture Performance

CO2 capture and storage is a promising concept to reduce anthropogenic CO2 emissions. The most established technology for capturing CO2 relies on amine scrubbing that is, however, associated with high costs. Technoeconomic studies show that using CaO as a high‐temperature CO2 sorbent can significant...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2017-11, Vol.29 (41), p.n/a
Hauptverfasser: Armutlulu, Andac, Naeem, Muhammad Awais, Liu, Hsueh‐Ju, Kim, Sung Min, Kierzkowska, Agnieszka, Fedorov, Alexey, Müller, Christoph R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 41
container_start_page
container_title Advanced materials (Weinheim)
container_volume 29
creator Armutlulu, Andac
Naeem, Muhammad Awais
Liu, Hsueh‐Ju
Kim, Sung Min
Kierzkowska, Agnieszka
Fedorov, Alexey
Müller, Christoph R.
description CO2 capture and storage is a promising concept to reduce anthropogenic CO2 emissions. The most established technology for capturing CO2 relies on amine scrubbing that is, however, associated with high costs. Technoeconomic studies show that using CaO as a high‐temperature CO2 sorbent can significantly reduce the costs of CO2 capture. A serious disadvantage of CaO derived from earth‐abundant precursors, e.g., limestone, is the rapid, sintering‐induced decay of its cyclic CO2 uptake. Here, a template‐assisted hydrothermal approach to develop CaO‐based sorbents exhibiting a very high and cyclically stable CO2 uptake is exploited. The morphological characteristics of these sorbents, i.e., a porous shell comprised of CaO nanoparticles coated by a thin layer of Al2O3 (
doi_str_mv 10.1002/adma.201702896
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_1958731016</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1958731016</sourcerecordid><originalsourceid>FETCH-LOGICAL-g2706-581ea9aee971690a91c6ff312b826d9f4ab093ad44861c371a03fddc25d5d5143</originalsourceid><addsrcrecordid>eNo9kN1LwzAUxYMoOKevPgd87sxN2rR5LNv8gI0K6nNI29RltE2XtEj9621Rxn24XH6HczkHoXsgKyCEPqqyUStKICY0EfwCLSCiEIRERJdoQQSLAsHD5BrdeH8khAhO-AKd9kPdG3_Qda1LvFYZ3pvCWd8dtNMev_cqN7X5mVg-4rS3jSnwTo3a4Y3urDe9sS22FU5rmjFcWYe37UG1xWyW0cmw6wen8Zt2E2tmcIuuKlV7ffe_l-jzafuxfgl22fPrOt0FXzQmPIgS0EoorUUMXBAloOBVxYDmCeWlqEKVT5lUGYYJh4LFoAiryrKgUTkNhGyJHv58O2dPg_a9PNrBtdNLCSJKYgYE-KQSf6pvU-tRds40yo0SiJw7lXOn8typTDf79HyxX3bIbLs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1958731016</pqid></control><display><type>article</type><title>Multishelled CaO Microspheres Stabilized by Atomic Layer Deposition of Al2O3 for Enhanced CO2 Capture Performance</title><source>Wiley Online Library All Journals</source><creator>Armutlulu, Andac ; Naeem, Muhammad Awais ; Liu, Hsueh‐Ju ; Kim, Sung Min ; Kierzkowska, Agnieszka ; Fedorov, Alexey ; Müller, Christoph R.</creator><creatorcontrib>Armutlulu, Andac ; Naeem, Muhammad Awais ; Liu, Hsueh‐Ju ; Kim, Sung Min ; Kierzkowska, Agnieszka ; Fedorov, Alexey ; Müller, Christoph R.</creatorcontrib><description>CO2 capture and storage is a promising concept to reduce anthropogenic CO2 emissions. The most established technology for capturing CO2 relies on amine scrubbing that is, however, associated with high costs. Technoeconomic studies show that using CaO as a high‐temperature CO2 sorbent can significantly reduce the costs of CO2 capture. A serious disadvantage of CaO derived from earth‐abundant precursors, e.g., limestone, is the rapid, sintering‐induced decay of its cyclic CO2 uptake. Here, a template‐assisted hydrothermal approach to develop CaO‐based sorbents exhibiting a very high and cyclically stable CO2 uptake is exploited. The morphological characteristics of these sorbents, i.e., a porous shell comprised of CaO nanoparticles coated by a thin layer of Al2O3 (&lt;3 nm) containing a central void, ensure (i) minimal diffusion limitations, (ii) space to accompany the substantial volumetric changes during CO2 capture and release, and (iii) a minimal quantity of Al2O3 for structural stabilization, thus maximizing the fraction of CO2‐capture‐active CaO. CaO‐based CO2 sorbents featuring a high CO2 uptake (0.55 gCO2 gsorbent−1) are developed via a template‐assisted synthesis approach. The highly porous, nanostructured multishelled morphology is stabilized by an ultrathin film of Al2O3 grown by atomic layer deposition. The capacity retention is 89.9% after 30 operation cycles.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.201702896</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Aluminum oxide ; atomic layer deposition ; Atomic layer epitaxy ; calcium oxide ; Carbon dioxide ; Carbon sequestration ; carbon template ; CO2 sorbents ; Limestone ; Materials science ; Microspheres ; multishelled structures ; Sintering (powder metallurgy) ; Sorbents ; Washing</subject><ispartof>Advanced materials (Weinheim), 2017-11, Vol.29 (41), p.n/a</ispartof><rights>2017 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2017 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-2234-6902</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.201702896$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.201702896$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Armutlulu, Andac</creatorcontrib><creatorcontrib>Naeem, Muhammad Awais</creatorcontrib><creatorcontrib>Liu, Hsueh‐Ju</creatorcontrib><creatorcontrib>Kim, Sung Min</creatorcontrib><creatorcontrib>Kierzkowska, Agnieszka</creatorcontrib><creatorcontrib>Fedorov, Alexey</creatorcontrib><creatorcontrib>Müller, Christoph R.</creatorcontrib><title>Multishelled CaO Microspheres Stabilized by Atomic Layer Deposition of Al2O3 for Enhanced CO2 Capture Performance</title><title>Advanced materials (Weinheim)</title><description>CO2 capture and storage is a promising concept to reduce anthropogenic CO2 emissions. The most established technology for capturing CO2 relies on amine scrubbing that is, however, associated with high costs. Technoeconomic studies show that using CaO as a high‐temperature CO2 sorbent can significantly reduce the costs of CO2 capture. A serious disadvantage of CaO derived from earth‐abundant precursors, e.g., limestone, is the rapid, sintering‐induced decay of its cyclic CO2 uptake. Here, a template‐assisted hydrothermal approach to develop CaO‐based sorbents exhibiting a very high and cyclically stable CO2 uptake is exploited. The morphological characteristics of these sorbents, i.e., a porous shell comprised of CaO nanoparticles coated by a thin layer of Al2O3 (&lt;3 nm) containing a central void, ensure (i) minimal diffusion limitations, (ii) space to accompany the substantial volumetric changes during CO2 capture and release, and (iii) a minimal quantity of Al2O3 for structural stabilization, thus maximizing the fraction of CO2‐capture‐active CaO. CaO‐based CO2 sorbents featuring a high CO2 uptake (0.55 gCO2 gsorbent−1) are developed via a template‐assisted synthesis approach. The highly porous, nanostructured multishelled morphology is stabilized by an ultrathin film of Al2O3 grown by atomic layer deposition. The capacity retention is 89.9% after 30 operation cycles.</description><subject>Aluminum oxide</subject><subject>atomic layer deposition</subject><subject>Atomic layer epitaxy</subject><subject>calcium oxide</subject><subject>Carbon dioxide</subject><subject>Carbon sequestration</subject><subject>carbon template</subject><subject>CO2 sorbents</subject><subject>Limestone</subject><subject>Materials science</subject><subject>Microspheres</subject><subject>multishelled structures</subject><subject>Sintering (powder metallurgy)</subject><subject>Sorbents</subject><subject>Washing</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo9kN1LwzAUxYMoOKevPgd87sxN2rR5LNv8gI0K6nNI29RltE2XtEj9621Rxn24XH6HczkHoXsgKyCEPqqyUStKICY0EfwCLSCiEIRERJdoQQSLAsHD5BrdeH8khAhO-AKd9kPdG3_Qda1LvFYZ3pvCWd8dtNMev_cqN7X5mVg-4rS3jSnwTo3a4Y3urDe9sS22FU5rmjFcWYe37UG1xWyW0cmw6wen8Zt2E2tmcIuuKlV7ffe_l-jzafuxfgl22fPrOt0FXzQmPIgS0EoorUUMXBAloOBVxYDmCeWlqEKVT5lUGYYJh4LFoAiryrKgUTkNhGyJHv58O2dPg_a9PNrBtdNLCSJKYgYE-KQSf6pvU-tRds40yo0SiJw7lXOn8typTDf79HyxX3bIbLs</recordid><startdate>20171106</startdate><enddate>20171106</enddate><creator>Armutlulu, Andac</creator><creator>Naeem, Muhammad Awais</creator><creator>Liu, Hsueh‐Ju</creator><creator>Kim, Sung Min</creator><creator>Kierzkowska, Agnieszka</creator><creator>Fedorov, Alexey</creator><creator>Müller, Christoph R.</creator><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-2234-6902</orcidid></search><sort><creationdate>20171106</creationdate><title>Multishelled CaO Microspheres Stabilized by Atomic Layer Deposition of Al2O3 for Enhanced CO2 Capture Performance</title><author>Armutlulu, Andac ; Naeem, Muhammad Awais ; Liu, Hsueh‐Ju ; Kim, Sung Min ; Kierzkowska, Agnieszka ; Fedorov, Alexey ; Müller, Christoph R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g2706-581ea9aee971690a91c6ff312b826d9f4ab093ad44861c371a03fddc25d5d5143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aluminum oxide</topic><topic>atomic layer deposition</topic><topic>Atomic layer epitaxy</topic><topic>calcium oxide</topic><topic>Carbon dioxide</topic><topic>Carbon sequestration</topic><topic>carbon template</topic><topic>CO2 sorbents</topic><topic>Limestone</topic><topic>Materials science</topic><topic>Microspheres</topic><topic>multishelled structures</topic><topic>Sintering (powder metallurgy)</topic><topic>Sorbents</topic><topic>Washing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Armutlulu, Andac</creatorcontrib><creatorcontrib>Naeem, Muhammad Awais</creatorcontrib><creatorcontrib>Liu, Hsueh‐Ju</creatorcontrib><creatorcontrib>Kim, Sung Min</creatorcontrib><creatorcontrib>Kierzkowska, Agnieszka</creatorcontrib><creatorcontrib>Fedorov, Alexey</creatorcontrib><creatorcontrib>Müller, Christoph R.</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Armutlulu, Andac</au><au>Naeem, Muhammad Awais</au><au>Liu, Hsueh‐Ju</au><au>Kim, Sung Min</au><au>Kierzkowska, Agnieszka</au><au>Fedorov, Alexey</au><au>Müller, Christoph R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multishelled CaO Microspheres Stabilized by Atomic Layer Deposition of Al2O3 for Enhanced CO2 Capture Performance</atitle><jtitle>Advanced materials (Weinheim)</jtitle><date>2017-11-06</date><risdate>2017</risdate><volume>29</volume><issue>41</issue><epage>n/a</epage><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>CO2 capture and storage is a promising concept to reduce anthropogenic CO2 emissions. The most established technology for capturing CO2 relies on amine scrubbing that is, however, associated with high costs. Technoeconomic studies show that using CaO as a high‐temperature CO2 sorbent can significantly reduce the costs of CO2 capture. A serious disadvantage of CaO derived from earth‐abundant precursors, e.g., limestone, is the rapid, sintering‐induced decay of its cyclic CO2 uptake. Here, a template‐assisted hydrothermal approach to develop CaO‐based sorbents exhibiting a very high and cyclically stable CO2 uptake is exploited. The morphological characteristics of these sorbents, i.e., a porous shell comprised of CaO nanoparticles coated by a thin layer of Al2O3 (&lt;3 nm) containing a central void, ensure (i) minimal diffusion limitations, (ii) space to accompany the substantial volumetric changes during CO2 capture and release, and (iii) a minimal quantity of Al2O3 for structural stabilization, thus maximizing the fraction of CO2‐capture‐active CaO. CaO‐based CO2 sorbents featuring a high CO2 uptake (0.55 gCO2 gsorbent−1) are developed via a template‐assisted synthesis approach. The highly porous, nanostructured multishelled morphology is stabilized by an ultrathin film of Al2O3 grown by atomic layer deposition. The capacity retention is 89.9% after 30 operation cycles.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adma.201702896</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-2234-6902</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2017-11, Vol.29 (41), p.n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_journals_1958731016
source Wiley Online Library All Journals
subjects Aluminum oxide
atomic layer deposition
Atomic layer epitaxy
calcium oxide
Carbon dioxide
Carbon sequestration
carbon template
CO2 sorbents
Limestone
Materials science
Microspheres
multishelled structures
Sintering (powder metallurgy)
Sorbents
Washing
title Multishelled CaO Microspheres Stabilized by Atomic Layer Deposition of Al2O3 for Enhanced CO2 Capture Performance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T23%3A15%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multishelled%20CaO%20Microspheres%20Stabilized%20by%20Atomic%20Layer%20Deposition%20of%20Al2O3%20for%20Enhanced%20CO2%20Capture%20Performance&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Armutlulu,%20Andac&rft.date=2017-11-06&rft.volume=29&rft.issue=41&rft.epage=n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.201702896&rft_dat=%3Cproquest_wiley%3E1958731016%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1958731016&rft_id=info:pmid/&rfr_iscdi=true