Solutal Marangoni flows of miscible liquids drive transport without surface contamination

The way two liquids interact depends on how miscible they are. A remarkable phenomenon involving two miscible liquids is now reported: placing a drop of isopropanol on a water surface results in a Marangoni flow, and a static lens in the middle. Mixing and spreading of different liquids are omnipres...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature physics 2017-11, Vol.13 (11), p.1105-1110
Hauptverfasser: Kim, Hyoungsoo, Muller, Koen, Shardt, Orest, Afkhami, Shahriar, Stone, Howard A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1110
container_issue 11
container_start_page 1105
container_title Nature physics
container_volume 13
creator Kim, Hyoungsoo
Muller, Koen
Shardt, Orest
Afkhami, Shahriar
Stone, Howard A.
description The way two liquids interact depends on how miscible they are. A remarkable phenomenon involving two miscible liquids is now reported: placing a drop of isopropanol on a water surface results in a Marangoni flow, and a static lens in the middle. Mixing and spreading of different liquids are omnipresent in nature, life and technology, such as oil pollution on the sea 1 , 2 , estuaries 3 , food processing 4 , cosmetic and beverage industries 5 , 6 , lab-on-a-chip devices 7 , and polymer processing 8 . However, the mixing and spreading mechanisms for miscible liquids remain poorly characterized. Here, we show that a fully soluble liquid drop deposited on a liquid surface remains as a static lens without immediately spreading and mixing, and simultaneously a Marangoni-driven convective flow is generated, which are counterintuitive results when two liquids have different surface tensions. To understand the dynamics, we develop a theoretical model to predict the finite spreading time and length scales, the Marangoni-driven convection flow speed, and the finite timescale to establish the quasi-steady state for the Marangoni flow. The fundamental understanding of this solutal Marangoni flow may enable driving bulk flows and constructing an effective drug delivery and surface cleaning approach without causing surface contamination by immiscible chemical species.
doi_str_mv 10.1038/nphys4214
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1958573417</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1958573417</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-16ff5e143af26e231764c32d08dd4f5c9ab2bb8bb5b780440a1a9428e3167b7b3</originalsourceid><addsrcrecordid>eNpl0EtLAzEUBeAgCtbHwn8QcKUwmtdMMkspvqDiQl24GpJM0qZMk2mSsfTfO1Ipgqt7Fx_nwAHgAqMbjKi49f1imxjB7ABMMGdlQZjAh_uf02NwktISIUYqTCfg8y10Q5YdfJFR-nnwDtoubBIMFq5c0k51BnZuPbg2wTa6LwPzCFMfYoYblxdhyDAN0UptoA4-y5XzMrvgz8CRlV0y57_3FHw83L9Pn4rZ6-Pz9G5WaFrTXODK2tJgRqUllSEU84ppSlok2pbZUtdSEaWEUqXiAjGGJJY1I8JQXHHFFT0Fl7vcPob1YFJulmGIfqxscF2KklOG-aiudkrHkFI0tumjW8m4bTBqfpZr9suN9npn02j83MQ_if_wNwPXcdM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1958573417</pqid></control><display><type>article</type><title>Solutal Marangoni flows of miscible liquids drive transport without surface contamination</title><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Kim, Hyoungsoo ; Muller, Koen ; Shardt, Orest ; Afkhami, Shahriar ; Stone, Howard A.</creator><creatorcontrib>Kim, Hyoungsoo ; Muller, Koen ; Shardt, Orest ; Afkhami, Shahriar ; Stone, Howard A.</creatorcontrib><description>The way two liquids interact depends on how miscible they are. A remarkable phenomenon involving two miscible liquids is now reported: placing a drop of isopropanol on a water surface results in a Marangoni flow, and a static lens in the middle. Mixing and spreading of different liquids are omnipresent in nature, life and technology, such as oil pollution on the sea 1 , 2 , estuaries 3 , food processing 4 , cosmetic and beverage industries 5 , 6 , lab-on-a-chip devices 7 , and polymer processing 8 . However, the mixing and spreading mechanisms for miscible liquids remain poorly characterized. Here, we show that a fully soluble liquid drop deposited on a liquid surface remains as a static lens without immediately spreading and mixing, and simultaneously a Marangoni-driven convective flow is generated, which are counterintuitive results when two liquids have different surface tensions. To understand the dynamics, we develop a theoretical model to predict the finite spreading time and length scales, the Marangoni-driven convection flow speed, and the finite timescale to establish the quasi-steady state for the Marangoni flow. The fundamental understanding of this solutal Marangoni flow may enable driving bulk flows and constructing an effective drug delivery and surface cleaning approach without causing surface contamination by immiscible chemical species.</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>DOI: 10.1038/nphys4214</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/923/614 ; 639/766/189 ; Atomic ; Chemical speciation ; Classical and Continuum Physics ; Cleaning ; Complex Systems ; Condensed Matter Physics ; Contamination ; Convection ; Convective flow ; Drug delivery systems ; Equilibrium flow ; Estuaries ; Estuarine environments ; Food processing ; Food processing industry ; letter ; Liquids ; Mathematical and Computational Physics ; Molecular ; Oil pollution ; Optical and Plasma Physics ; Physics ; Polymers ; Spreading ; Surface chemistry ; Theoretical</subject><ispartof>Nature physics, 2017-11, Vol.13 (11), p.1105-1110</ispartof><rights>Springer Nature Limited 2017</rights><rights>Copyright Nature Publishing Group Nov 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-16ff5e143af26e231764c32d08dd4f5c9ab2bb8bb5b780440a1a9428e3167b7b3</citedby><cites>FETCH-LOGICAL-c393t-16ff5e143af26e231764c32d08dd4f5c9ab2bb8bb5b780440a1a9428e3167b7b3</cites><orcidid>0000-0002-9670-0639 ; 0000-0002-2393-723X ; 0000-0001-9643-0408</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kim, Hyoungsoo</creatorcontrib><creatorcontrib>Muller, Koen</creatorcontrib><creatorcontrib>Shardt, Orest</creatorcontrib><creatorcontrib>Afkhami, Shahriar</creatorcontrib><creatorcontrib>Stone, Howard A.</creatorcontrib><title>Solutal Marangoni flows of miscible liquids drive transport without surface contamination</title><title>Nature physics</title><addtitle>Nature Phys</addtitle><description>The way two liquids interact depends on how miscible they are. A remarkable phenomenon involving two miscible liquids is now reported: placing a drop of isopropanol on a water surface results in a Marangoni flow, and a static lens in the middle. Mixing and spreading of different liquids are omnipresent in nature, life and technology, such as oil pollution on the sea 1 , 2 , estuaries 3 , food processing 4 , cosmetic and beverage industries 5 , 6 , lab-on-a-chip devices 7 , and polymer processing 8 . However, the mixing and spreading mechanisms for miscible liquids remain poorly characterized. Here, we show that a fully soluble liquid drop deposited on a liquid surface remains as a static lens without immediately spreading and mixing, and simultaneously a Marangoni-driven convective flow is generated, which are counterintuitive results when two liquids have different surface tensions. To understand the dynamics, we develop a theoretical model to predict the finite spreading time and length scales, the Marangoni-driven convection flow speed, and the finite timescale to establish the quasi-steady state for the Marangoni flow. The fundamental understanding of this solutal Marangoni flow may enable driving bulk flows and constructing an effective drug delivery and surface cleaning approach without causing surface contamination by immiscible chemical species.</description><subject>639/301/923/614</subject><subject>639/766/189</subject><subject>Atomic</subject><subject>Chemical speciation</subject><subject>Classical and Continuum Physics</subject><subject>Cleaning</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Contamination</subject><subject>Convection</subject><subject>Convective flow</subject><subject>Drug delivery systems</subject><subject>Equilibrium flow</subject><subject>Estuaries</subject><subject>Estuarine environments</subject><subject>Food processing</subject><subject>Food processing industry</subject><subject>letter</subject><subject>Liquids</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Oil pollution</subject><subject>Optical and Plasma Physics</subject><subject>Physics</subject><subject>Polymers</subject><subject>Spreading</subject><subject>Surface chemistry</subject><subject>Theoretical</subject><issn>1745-2473</issn><issn>1745-2481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpl0EtLAzEUBeAgCtbHwn8QcKUwmtdMMkspvqDiQl24GpJM0qZMk2mSsfTfO1Ipgqt7Fx_nwAHgAqMbjKi49f1imxjB7ABMMGdlQZjAh_uf02NwktISIUYqTCfg8y10Q5YdfJFR-nnwDtoubBIMFq5c0k51BnZuPbg2wTa6LwPzCFMfYoYblxdhyDAN0UptoA4-y5XzMrvgz8CRlV0y57_3FHw83L9Pn4rZ6-Pz9G5WaFrTXODK2tJgRqUllSEU84ppSlok2pbZUtdSEaWEUqXiAjGGJJY1I8JQXHHFFT0Fl7vcPob1YFJulmGIfqxscF2KklOG-aiudkrHkFI0tumjW8m4bTBqfpZr9suN9npn02j83MQ_if_wNwPXcdM</recordid><startdate>20171101</startdate><enddate>20171101</enddate><creator>Kim, Hyoungsoo</creator><creator>Muller, Koen</creator><creator>Shardt, Orest</creator><creator>Afkhami, Shahriar</creator><creator>Stone, Howard A.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-9670-0639</orcidid><orcidid>https://orcid.org/0000-0002-2393-723X</orcidid><orcidid>https://orcid.org/0000-0001-9643-0408</orcidid></search><sort><creationdate>20171101</creationdate><title>Solutal Marangoni flows of miscible liquids drive transport without surface contamination</title><author>Kim, Hyoungsoo ; Muller, Koen ; Shardt, Orest ; Afkhami, Shahriar ; Stone, Howard A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-16ff5e143af26e231764c32d08dd4f5c9ab2bb8bb5b780440a1a9428e3167b7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>639/301/923/614</topic><topic>639/766/189</topic><topic>Atomic</topic><topic>Chemical speciation</topic><topic>Classical and Continuum Physics</topic><topic>Cleaning</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Contamination</topic><topic>Convection</topic><topic>Convective flow</topic><topic>Drug delivery systems</topic><topic>Equilibrium flow</topic><topic>Estuaries</topic><topic>Estuarine environments</topic><topic>Food processing</topic><topic>Food processing industry</topic><topic>letter</topic><topic>Liquids</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Oil pollution</topic><topic>Optical and Plasma Physics</topic><topic>Physics</topic><topic>Polymers</topic><topic>Spreading</topic><topic>Surface chemistry</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Hyoungsoo</creatorcontrib><creatorcontrib>Muller, Koen</creatorcontrib><creatorcontrib>Shardt, Orest</creatorcontrib><creatorcontrib>Afkhami, Shahriar</creatorcontrib><creatorcontrib>Stone, Howard A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Science Journals</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Hyoungsoo</au><au>Muller, Koen</au><au>Shardt, Orest</au><au>Afkhami, Shahriar</au><au>Stone, Howard A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solutal Marangoni flows of miscible liquids drive transport without surface contamination</atitle><jtitle>Nature physics</jtitle><stitle>Nature Phys</stitle><date>2017-11-01</date><risdate>2017</risdate><volume>13</volume><issue>11</issue><spage>1105</spage><epage>1110</epage><pages>1105-1110</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><abstract>The way two liquids interact depends on how miscible they are. A remarkable phenomenon involving two miscible liquids is now reported: placing a drop of isopropanol on a water surface results in a Marangoni flow, and a static lens in the middle. Mixing and spreading of different liquids are omnipresent in nature, life and technology, such as oil pollution on the sea 1 , 2 , estuaries 3 , food processing 4 , cosmetic and beverage industries 5 , 6 , lab-on-a-chip devices 7 , and polymer processing 8 . However, the mixing and spreading mechanisms for miscible liquids remain poorly characterized. Here, we show that a fully soluble liquid drop deposited on a liquid surface remains as a static lens without immediately spreading and mixing, and simultaneously a Marangoni-driven convective flow is generated, which are counterintuitive results when two liquids have different surface tensions. To understand the dynamics, we develop a theoretical model to predict the finite spreading time and length scales, the Marangoni-driven convection flow speed, and the finite timescale to establish the quasi-steady state for the Marangoni flow. The fundamental understanding of this solutal Marangoni flow may enable driving bulk flows and constructing an effective drug delivery and surface cleaning approach without causing surface contamination by immiscible chemical species.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/nphys4214</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-9670-0639</orcidid><orcidid>https://orcid.org/0000-0002-2393-723X</orcidid><orcidid>https://orcid.org/0000-0001-9643-0408</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1745-2473
ispartof Nature physics, 2017-11, Vol.13 (11), p.1105-1110
issn 1745-2473
1745-2481
language eng
recordid cdi_proquest_journals_1958573417
source Nature; Alma/SFX Local Collection
subjects 639/301/923/614
639/766/189
Atomic
Chemical speciation
Classical and Continuum Physics
Cleaning
Complex Systems
Condensed Matter Physics
Contamination
Convection
Convective flow
Drug delivery systems
Equilibrium flow
Estuaries
Estuarine environments
Food processing
Food processing industry
letter
Liquids
Mathematical and Computational Physics
Molecular
Oil pollution
Optical and Plasma Physics
Physics
Polymers
Spreading
Surface chemistry
Theoretical
title Solutal Marangoni flows of miscible liquids drive transport without surface contamination
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T17%3A52%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solutal%20Marangoni%20flows%20of%20miscible%20liquids%20drive%20transport%20without%20surface%20contamination&rft.jtitle=Nature%20physics&rft.au=Kim,%20Hyoungsoo&rft.date=2017-11-01&rft.volume=13&rft.issue=11&rft.spage=1105&rft.epage=1110&rft.pages=1105-1110&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/nphys4214&rft_dat=%3Cproquest_cross%3E1958573417%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1958573417&rft_id=info:pmid/&rfr_iscdi=true