Solutal Marangoni flows of miscible liquids drive transport without surface contamination
The way two liquids interact depends on how miscible they are. A remarkable phenomenon involving two miscible liquids is now reported: placing a drop of isopropanol on a water surface results in a Marangoni flow, and a static lens in the middle. Mixing and spreading of different liquids are omnipres...
Gespeichert in:
Veröffentlicht in: | Nature physics 2017-11, Vol.13 (11), p.1105-1110 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1110 |
---|---|
container_issue | 11 |
container_start_page | 1105 |
container_title | Nature physics |
container_volume | 13 |
creator | Kim, Hyoungsoo Muller, Koen Shardt, Orest Afkhami, Shahriar Stone, Howard A. |
description | The way two liquids interact depends on how miscible they are. A remarkable phenomenon involving two miscible liquids is now reported: placing a drop of isopropanol on a water surface results in a Marangoni flow, and a static lens in the middle.
Mixing and spreading of different liquids are omnipresent in nature, life and technology, such as oil pollution on the sea
1
,
2
, estuaries
3
, food processing
4
, cosmetic and beverage industries
5
,
6
, lab-on-a-chip devices
7
, and polymer processing
8
. However, the mixing and spreading mechanisms for miscible liquids remain poorly characterized. Here, we show that a fully soluble liquid drop deposited on a liquid surface remains as a static lens without immediately spreading and mixing, and simultaneously a Marangoni-driven convective flow is generated, which are counterintuitive results when two liquids have different surface tensions. To understand the dynamics, we develop a theoretical model to predict the finite spreading time and length scales, the Marangoni-driven convection flow speed, and the finite timescale to establish the quasi-steady state for the Marangoni flow. The fundamental understanding of this solutal Marangoni flow may enable driving bulk flows and constructing an effective drug delivery and surface cleaning approach without causing surface contamination by immiscible chemical species. |
doi_str_mv | 10.1038/nphys4214 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1958573417</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1958573417</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-16ff5e143af26e231764c32d08dd4f5c9ab2bb8bb5b780440a1a9428e3167b7b3</originalsourceid><addsrcrecordid>eNpl0EtLAzEUBeAgCtbHwn8QcKUwmtdMMkspvqDiQl24GpJM0qZMk2mSsfTfO1Ipgqt7Fx_nwAHgAqMbjKi49f1imxjB7ABMMGdlQZjAh_uf02NwktISIUYqTCfg8y10Q5YdfJFR-nnwDtoubBIMFq5c0k51BnZuPbg2wTa6LwPzCFMfYoYblxdhyDAN0UptoA4-y5XzMrvgz8CRlV0y57_3FHw83L9Pn4rZ6-Pz9G5WaFrTXODK2tJgRqUllSEU84ppSlok2pbZUtdSEaWEUqXiAjGGJJY1I8JQXHHFFT0Fl7vcPob1YFJulmGIfqxscF2KklOG-aiudkrHkFI0tumjW8m4bTBqfpZr9suN9npn02j83MQ_if_wNwPXcdM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1958573417</pqid></control><display><type>article</type><title>Solutal Marangoni flows of miscible liquids drive transport without surface contamination</title><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Kim, Hyoungsoo ; Muller, Koen ; Shardt, Orest ; Afkhami, Shahriar ; Stone, Howard A.</creator><creatorcontrib>Kim, Hyoungsoo ; Muller, Koen ; Shardt, Orest ; Afkhami, Shahriar ; Stone, Howard A.</creatorcontrib><description>The way two liquids interact depends on how miscible they are. A remarkable phenomenon involving two miscible liquids is now reported: placing a drop of isopropanol on a water surface results in a Marangoni flow, and a static lens in the middle.
Mixing and spreading of different liquids are omnipresent in nature, life and technology, such as oil pollution on the sea
1
,
2
, estuaries
3
, food processing
4
, cosmetic and beverage industries
5
,
6
, lab-on-a-chip devices
7
, and polymer processing
8
. However, the mixing and spreading mechanisms for miscible liquids remain poorly characterized. Here, we show that a fully soluble liquid drop deposited on a liquid surface remains as a static lens without immediately spreading and mixing, and simultaneously a Marangoni-driven convective flow is generated, which are counterintuitive results when two liquids have different surface tensions. To understand the dynamics, we develop a theoretical model to predict the finite spreading time and length scales, the Marangoni-driven convection flow speed, and the finite timescale to establish the quasi-steady state for the Marangoni flow. The fundamental understanding of this solutal Marangoni flow may enable driving bulk flows and constructing an effective drug delivery and surface cleaning approach without causing surface contamination by immiscible chemical species.</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>DOI: 10.1038/nphys4214</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/923/614 ; 639/766/189 ; Atomic ; Chemical speciation ; Classical and Continuum Physics ; Cleaning ; Complex Systems ; Condensed Matter Physics ; Contamination ; Convection ; Convective flow ; Drug delivery systems ; Equilibrium flow ; Estuaries ; Estuarine environments ; Food processing ; Food processing industry ; letter ; Liquids ; Mathematical and Computational Physics ; Molecular ; Oil pollution ; Optical and Plasma Physics ; Physics ; Polymers ; Spreading ; Surface chemistry ; Theoretical</subject><ispartof>Nature physics, 2017-11, Vol.13 (11), p.1105-1110</ispartof><rights>Springer Nature Limited 2017</rights><rights>Copyright Nature Publishing Group Nov 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-16ff5e143af26e231764c32d08dd4f5c9ab2bb8bb5b780440a1a9428e3167b7b3</citedby><cites>FETCH-LOGICAL-c393t-16ff5e143af26e231764c32d08dd4f5c9ab2bb8bb5b780440a1a9428e3167b7b3</cites><orcidid>0000-0002-9670-0639 ; 0000-0002-2393-723X ; 0000-0001-9643-0408</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kim, Hyoungsoo</creatorcontrib><creatorcontrib>Muller, Koen</creatorcontrib><creatorcontrib>Shardt, Orest</creatorcontrib><creatorcontrib>Afkhami, Shahriar</creatorcontrib><creatorcontrib>Stone, Howard A.</creatorcontrib><title>Solutal Marangoni flows of miscible liquids drive transport without surface contamination</title><title>Nature physics</title><addtitle>Nature Phys</addtitle><description>The way two liquids interact depends on how miscible they are. A remarkable phenomenon involving two miscible liquids is now reported: placing a drop of isopropanol on a water surface results in a Marangoni flow, and a static lens in the middle.
Mixing and spreading of different liquids are omnipresent in nature, life and technology, such as oil pollution on the sea
1
,
2
, estuaries
3
, food processing
4
, cosmetic and beverage industries
5
,
6
, lab-on-a-chip devices
7
, and polymer processing
8
. However, the mixing and spreading mechanisms for miscible liquids remain poorly characterized. Here, we show that a fully soluble liquid drop deposited on a liquid surface remains as a static lens without immediately spreading and mixing, and simultaneously a Marangoni-driven convective flow is generated, which are counterintuitive results when two liquids have different surface tensions. To understand the dynamics, we develop a theoretical model to predict the finite spreading time and length scales, the Marangoni-driven convection flow speed, and the finite timescale to establish the quasi-steady state for the Marangoni flow. The fundamental understanding of this solutal Marangoni flow may enable driving bulk flows and constructing an effective drug delivery and surface cleaning approach without causing surface contamination by immiscible chemical species.</description><subject>639/301/923/614</subject><subject>639/766/189</subject><subject>Atomic</subject><subject>Chemical speciation</subject><subject>Classical and Continuum Physics</subject><subject>Cleaning</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Contamination</subject><subject>Convection</subject><subject>Convective flow</subject><subject>Drug delivery systems</subject><subject>Equilibrium flow</subject><subject>Estuaries</subject><subject>Estuarine environments</subject><subject>Food processing</subject><subject>Food processing industry</subject><subject>letter</subject><subject>Liquids</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Oil pollution</subject><subject>Optical and Plasma Physics</subject><subject>Physics</subject><subject>Polymers</subject><subject>Spreading</subject><subject>Surface chemistry</subject><subject>Theoretical</subject><issn>1745-2473</issn><issn>1745-2481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpl0EtLAzEUBeAgCtbHwn8QcKUwmtdMMkspvqDiQl24GpJM0qZMk2mSsfTfO1Ipgqt7Fx_nwAHgAqMbjKi49f1imxjB7ABMMGdlQZjAh_uf02NwktISIUYqTCfg8y10Q5YdfJFR-nnwDtoubBIMFq5c0k51BnZuPbg2wTa6LwPzCFMfYoYblxdhyDAN0UptoA4-y5XzMrvgz8CRlV0y57_3FHw83L9Pn4rZ6-Pz9G5WaFrTXODK2tJgRqUllSEU84ppSlok2pbZUtdSEaWEUqXiAjGGJJY1I8JQXHHFFT0Fl7vcPob1YFJulmGIfqxscF2KklOG-aiudkrHkFI0tumjW8m4bTBqfpZr9suN9npn02j83MQ_if_wNwPXcdM</recordid><startdate>20171101</startdate><enddate>20171101</enddate><creator>Kim, Hyoungsoo</creator><creator>Muller, Koen</creator><creator>Shardt, Orest</creator><creator>Afkhami, Shahriar</creator><creator>Stone, Howard A.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-9670-0639</orcidid><orcidid>https://orcid.org/0000-0002-2393-723X</orcidid><orcidid>https://orcid.org/0000-0001-9643-0408</orcidid></search><sort><creationdate>20171101</creationdate><title>Solutal Marangoni flows of miscible liquids drive transport without surface contamination</title><author>Kim, Hyoungsoo ; Muller, Koen ; Shardt, Orest ; Afkhami, Shahriar ; Stone, Howard A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-16ff5e143af26e231764c32d08dd4f5c9ab2bb8bb5b780440a1a9428e3167b7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>639/301/923/614</topic><topic>639/766/189</topic><topic>Atomic</topic><topic>Chemical speciation</topic><topic>Classical and Continuum Physics</topic><topic>Cleaning</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Contamination</topic><topic>Convection</topic><topic>Convective flow</topic><topic>Drug delivery systems</topic><topic>Equilibrium flow</topic><topic>Estuaries</topic><topic>Estuarine environments</topic><topic>Food processing</topic><topic>Food processing industry</topic><topic>letter</topic><topic>Liquids</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Oil pollution</topic><topic>Optical and Plasma Physics</topic><topic>Physics</topic><topic>Polymers</topic><topic>Spreading</topic><topic>Surface chemistry</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Hyoungsoo</creatorcontrib><creatorcontrib>Muller, Koen</creatorcontrib><creatorcontrib>Shardt, Orest</creatorcontrib><creatorcontrib>Afkhami, Shahriar</creatorcontrib><creatorcontrib>Stone, Howard A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Science Journals</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Hyoungsoo</au><au>Muller, Koen</au><au>Shardt, Orest</au><au>Afkhami, Shahriar</au><au>Stone, Howard A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solutal Marangoni flows of miscible liquids drive transport without surface contamination</atitle><jtitle>Nature physics</jtitle><stitle>Nature Phys</stitle><date>2017-11-01</date><risdate>2017</risdate><volume>13</volume><issue>11</issue><spage>1105</spage><epage>1110</epage><pages>1105-1110</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><abstract>The way two liquids interact depends on how miscible they are. A remarkable phenomenon involving two miscible liquids is now reported: placing a drop of isopropanol on a water surface results in a Marangoni flow, and a static lens in the middle.
Mixing and spreading of different liquids are omnipresent in nature, life and technology, such as oil pollution on the sea
1
,
2
, estuaries
3
, food processing
4
, cosmetic and beverage industries
5
,
6
, lab-on-a-chip devices
7
, and polymer processing
8
. However, the mixing and spreading mechanisms for miscible liquids remain poorly characterized. Here, we show that a fully soluble liquid drop deposited on a liquid surface remains as a static lens without immediately spreading and mixing, and simultaneously a Marangoni-driven convective flow is generated, which are counterintuitive results when two liquids have different surface tensions. To understand the dynamics, we develop a theoretical model to predict the finite spreading time and length scales, the Marangoni-driven convection flow speed, and the finite timescale to establish the quasi-steady state for the Marangoni flow. The fundamental understanding of this solutal Marangoni flow may enable driving bulk flows and constructing an effective drug delivery and surface cleaning approach without causing surface contamination by immiscible chemical species.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/nphys4214</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-9670-0639</orcidid><orcidid>https://orcid.org/0000-0002-2393-723X</orcidid><orcidid>https://orcid.org/0000-0001-9643-0408</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1745-2473 |
ispartof | Nature physics, 2017-11, Vol.13 (11), p.1105-1110 |
issn | 1745-2473 1745-2481 |
language | eng |
recordid | cdi_proquest_journals_1958573417 |
source | Nature; Alma/SFX Local Collection |
subjects | 639/301/923/614 639/766/189 Atomic Chemical speciation Classical and Continuum Physics Cleaning Complex Systems Condensed Matter Physics Contamination Convection Convective flow Drug delivery systems Equilibrium flow Estuaries Estuarine environments Food processing Food processing industry letter Liquids Mathematical and Computational Physics Molecular Oil pollution Optical and Plasma Physics Physics Polymers Spreading Surface chemistry Theoretical |
title | Solutal Marangoni flows of miscible liquids drive transport without surface contamination |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T17%3A52%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solutal%20Marangoni%20flows%20of%20miscible%20liquids%20drive%20transport%20without%20surface%20contamination&rft.jtitle=Nature%20physics&rft.au=Kim,%20Hyoungsoo&rft.date=2017-11-01&rft.volume=13&rft.issue=11&rft.spage=1105&rft.epage=1110&rft.pages=1105-1110&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/nphys4214&rft_dat=%3Cproquest_cross%3E1958573417%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1958573417&rft_id=info:pmid/&rfr_iscdi=true |