Highly Active GaN‐Stabilized Ta3N5 Thin‐Film Photoanode for Solar Water Oxidation
Ta3N5 is a very promising photocatalyst for solar water splitting because of its wide spectrum solar energy utilization up to 600 nm and suitable energy band position straddling the water splitting redox reactions. However, its development has long been impeded by poor compatibility with electrolyte...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie International Edition 2017-04, Vol.56 (17), p.4739-4743 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4743 |
---|---|
container_issue | 17 |
container_start_page | 4739 |
container_title | Angewandte Chemie International Edition |
container_volume | 56 |
creator | Zhong, Miao Hisatomi, Takashi Sasaki, Yutaka Suzuki, Sayaka Teshima, Katsuya Nakabayashi, Mamiko Shibata, Naoya Nishiyama, Hiroshi Katayama, Masao Yamada, Taro Domen, Kazunari |
description | Ta3N5 is a very promising photocatalyst for solar water splitting because of its wide spectrum solar energy utilization up to 600 nm and suitable energy band position straddling the water splitting redox reactions. However, its development has long been impeded by poor compatibility with electrolytes. Herein, we demonstrate a simple sputtering‐nitridation process to fabricate high‐performance Ta3N5 film photoanodes owing to successful synthesis of the vital TaOδ precursors. An effective GaN coating strategy is developed to remarkably stabilize Ta3N5 by forming a crystalline nitride‐on‐nitride structure with an improved nitride/electrolyte interface. A stable, high photocurrent density of 8 mA cm−2 was obtained with a CoPi/GaN/Ta3N5 photoanode at 1.2 VRHE under simulated sunlight, with O2 and H2 generated at a Faraday efficiency of unity over 12 h. Our vapor‐phase deposition method can be used to fabricate high‐performance (oxy)nitrides for practical photoelectrochemical applications.
Solar energy conversion: A simple and reliable vapor‐phase deposition technique is developed for fabricating GaN/Ta3N5 thin films that achieve state‐of‐the‐art solar water splitting performance and stability. The GaN overcoating strategy is readily applicable to stabilize various promising (oxy)nitrides for practical photo‐electrochemical applications. |
doi_str_mv | 10.1002/anie.201700117 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_1958515790</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4321496361</sourcerecordid><originalsourceid>FETCH-LOGICAL-g3647-fcf170b9d8e67cba3f1bd73c7a899442627c5d61cf4ea6a1f64825add176f3303</originalsourceid><addsrcrecordid>eNp9kMtOAjEUhhujiYhuXTdxPdhOp5dZEsItIWACxGXTmbZQMkxxZhBx5SP4jD6JJRiWrs4lX_7znx-AR4w6GKH4WZXOdGKEOUIY8yvQwjTGEeGcXIc-ISTiguJbcFfXm8ALgVgLLEdutS6OsJs37t3AoZr-fH3PG5W5wn0aDReKTClcrF0Z9gNXbOHL2jdelV4baH0F575QFXxVjang7MNp1Thf3oMbq4raPPzVNlgO-oveKJrMhuNedxKtCEt4ZHMb3GapFobxPFPE4kxzknMl0jRJYhbznGqGc5sYxRS2LBExVVpjziwhiLTB01l3V_m3vakbufH7qgwnJU5p-Jby9H9KiISnNEgFKj1TB1eYo9xVbquqo8RIntKVp3TlJV3ZnY77l4n8AioncH8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1884795303</pqid></control><display><type>article</type><title>Highly Active GaN‐Stabilized Ta3N5 Thin‐Film Photoanode for Solar Water Oxidation</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zhong, Miao ; Hisatomi, Takashi ; Sasaki, Yutaka ; Suzuki, Sayaka ; Teshima, Katsuya ; Nakabayashi, Mamiko ; Shibata, Naoya ; Nishiyama, Hiroshi ; Katayama, Masao ; Yamada, Taro ; Domen, Kazunari</creator><creatorcontrib>Zhong, Miao ; Hisatomi, Takashi ; Sasaki, Yutaka ; Suzuki, Sayaka ; Teshima, Katsuya ; Nakabayashi, Mamiko ; Shibata, Naoya ; Nishiyama, Hiroshi ; Katayama, Masao ; Yamada, Taro ; Domen, Kazunari</creatorcontrib><description>Ta3N5 is a very promising photocatalyst for solar water splitting because of its wide spectrum solar energy utilization up to 600 nm and suitable energy band position straddling the water splitting redox reactions. However, its development has long been impeded by poor compatibility with electrolytes. Herein, we demonstrate a simple sputtering‐nitridation process to fabricate high‐performance Ta3N5 film photoanodes owing to successful synthesis of the vital TaOδ precursors. An effective GaN coating strategy is developed to remarkably stabilize Ta3N5 by forming a crystalline nitride‐on‐nitride structure with an improved nitride/electrolyte interface. A stable, high photocurrent density of 8 mA cm−2 was obtained with a CoPi/GaN/Ta3N5 photoanode at 1.2 VRHE under simulated sunlight, with O2 and H2 generated at a Faraday efficiency of unity over 12 h. Our vapor‐phase deposition method can be used to fabricate high‐performance (oxy)nitrides for practical photoelectrochemical applications.
Solar energy conversion: A simple and reliable vapor‐phase deposition technique is developed for fabricating GaN/Ta3N5 thin films that achieve state‐of‐the‐art solar water splitting performance and stability. The GaN overcoating strategy is readily applicable to stabilize various promising (oxy)nitrides for practical photo‐electrochemical applications.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.201700117</identifier><identifier>CODEN: ACIEAY</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Coating effects ; electrochemistry ; Energy consumption ; Energy utilization ; Gallium nitrides ; Oxidation ; Photoanodes ; photochemistry ; Photoelectric effect ; Photoelectric emission ; Redox reactions ; Solar energy ; solar energy conversion ; Splitting ; Thin films ; Water heaters ; Water splitting</subject><ispartof>Angewandte Chemie International Edition, 2017-04, Vol.56 (17), p.4739-4743</ispartof><rights>2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-7995-4832</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.201700117$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.201700117$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Zhong, Miao</creatorcontrib><creatorcontrib>Hisatomi, Takashi</creatorcontrib><creatorcontrib>Sasaki, Yutaka</creatorcontrib><creatorcontrib>Suzuki, Sayaka</creatorcontrib><creatorcontrib>Teshima, Katsuya</creatorcontrib><creatorcontrib>Nakabayashi, Mamiko</creatorcontrib><creatorcontrib>Shibata, Naoya</creatorcontrib><creatorcontrib>Nishiyama, Hiroshi</creatorcontrib><creatorcontrib>Katayama, Masao</creatorcontrib><creatorcontrib>Yamada, Taro</creatorcontrib><creatorcontrib>Domen, Kazunari</creatorcontrib><title>Highly Active GaN‐Stabilized Ta3N5 Thin‐Film Photoanode for Solar Water Oxidation</title><title>Angewandte Chemie International Edition</title><description>Ta3N5 is a very promising photocatalyst for solar water splitting because of its wide spectrum solar energy utilization up to 600 nm and suitable energy band position straddling the water splitting redox reactions. However, its development has long been impeded by poor compatibility with electrolytes. Herein, we demonstrate a simple sputtering‐nitridation process to fabricate high‐performance Ta3N5 film photoanodes owing to successful synthesis of the vital TaOδ precursors. An effective GaN coating strategy is developed to remarkably stabilize Ta3N5 by forming a crystalline nitride‐on‐nitride structure with an improved nitride/electrolyte interface. A stable, high photocurrent density of 8 mA cm−2 was obtained with a CoPi/GaN/Ta3N5 photoanode at 1.2 VRHE under simulated sunlight, with O2 and H2 generated at a Faraday efficiency of unity over 12 h. Our vapor‐phase deposition method can be used to fabricate high‐performance (oxy)nitrides for practical photoelectrochemical applications.
Solar energy conversion: A simple and reliable vapor‐phase deposition technique is developed for fabricating GaN/Ta3N5 thin films that achieve state‐of‐the‐art solar water splitting performance and stability. The GaN overcoating strategy is readily applicable to stabilize various promising (oxy)nitrides for practical photo‐electrochemical applications.</description><subject>Coating effects</subject><subject>electrochemistry</subject><subject>Energy consumption</subject><subject>Energy utilization</subject><subject>Gallium nitrides</subject><subject>Oxidation</subject><subject>Photoanodes</subject><subject>photochemistry</subject><subject>Photoelectric effect</subject><subject>Photoelectric emission</subject><subject>Redox reactions</subject><subject>Solar energy</subject><subject>solar energy conversion</subject><subject>Splitting</subject><subject>Thin films</subject><subject>Water heaters</subject><subject>Water splitting</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOAjEUhhujiYhuXTdxPdhOp5dZEsItIWACxGXTmbZQMkxxZhBx5SP4jD6JJRiWrs4lX_7znx-AR4w6GKH4WZXOdGKEOUIY8yvQwjTGEeGcXIc-ISTiguJbcFfXm8ALgVgLLEdutS6OsJs37t3AoZr-fH3PG5W5wn0aDReKTClcrF0Z9gNXbOHL2jdelV4baH0F575QFXxVjang7MNp1Thf3oMbq4raPPzVNlgO-oveKJrMhuNedxKtCEt4ZHMb3GapFobxPFPE4kxzknMl0jRJYhbznGqGc5sYxRS2LBExVVpjziwhiLTB01l3V_m3vakbufH7qgwnJU5p-Jby9H9KiISnNEgFKj1TB1eYo9xVbquqo8RIntKVp3TlJV3ZnY77l4n8AioncH8</recordid><startdate>20170418</startdate><enddate>20170418</enddate><creator>Zhong, Miao</creator><creator>Hisatomi, Takashi</creator><creator>Sasaki, Yutaka</creator><creator>Suzuki, Sayaka</creator><creator>Teshima, Katsuya</creator><creator>Nakabayashi, Mamiko</creator><creator>Shibata, Naoya</creator><creator>Nishiyama, Hiroshi</creator><creator>Katayama, Masao</creator><creator>Yamada, Taro</creator><creator>Domen, Kazunari</creator><general>Wiley Subscription Services, Inc</general><scope>7TM</scope><scope>K9.</scope><orcidid>https://orcid.org/0000-0001-7995-4832</orcidid></search><sort><creationdate>20170418</creationdate><title>Highly Active GaN‐Stabilized Ta3N5 Thin‐Film Photoanode for Solar Water Oxidation</title><author>Zhong, Miao ; Hisatomi, Takashi ; Sasaki, Yutaka ; Suzuki, Sayaka ; Teshima, Katsuya ; Nakabayashi, Mamiko ; Shibata, Naoya ; Nishiyama, Hiroshi ; Katayama, Masao ; Yamada, Taro ; Domen, Kazunari</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g3647-fcf170b9d8e67cba3f1bd73c7a899442627c5d61cf4ea6a1f64825add176f3303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Coating effects</topic><topic>electrochemistry</topic><topic>Energy consumption</topic><topic>Energy utilization</topic><topic>Gallium nitrides</topic><topic>Oxidation</topic><topic>Photoanodes</topic><topic>photochemistry</topic><topic>Photoelectric effect</topic><topic>Photoelectric emission</topic><topic>Redox reactions</topic><topic>Solar energy</topic><topic>solar energy conversion</topic><topic>Splitting</topic><topic>Thin films</topic><topic>Water heaters</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhong, Miao</creatorcontrib><creatorcontrib>Hisatomi, Takashi</creatorcontrib><creatorcontrib>Sasaki, Yutaka</creatorcontrib><creatorcontrib>Suzuki, Sayaka</creatorcontrib><creatorcontrib>Teshima, Katsuya</creatorcontrib><creatorcontrib>Nakabayashi, Mamiko</creatorcontrib><creatorcontrib>Shibata, Naoya</creatorcontrib><creatorcontrib>Nishiyama, Hiroshi</creatorcontrib><creatorcontrib>Katayama, Masao</creatorcontrib><creatorcontrib>Yamada, Taro</creatorcontrib><creatorcontrib>Domen, Kazunari</creatorcontrib><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhong, Miao</au><au>Hisatomi, Takashi</au><au>Sasaki, Yutaka</au><au>Suzuki, Sayaka</au><au>Teshima, Katsuya</au><au>Nakabayashi, Mamiko</au><au>Shibata, Naoya</au><au>Nishiyama, Hiroshi</au><au>Katayama, Masao</au><au>Yamada, Taro</au><au>Domen, Kazunari</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly Active GaN‐Stabilized Ta3N5 Thin‐Film Photoanode for Solar Water Oxidation</atitle><jtitle>Angewandte Chemie International Edition</jtitle><date>2017-04-18</date><risdate>2017</risdate><volume>56</volume><issue>17</issue><spage>4739</spage><epage>4743</epage><pages>4739-4743</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><coden>ACIEAY</coden><abstract>Ta3N5 is a very promising photocatalyst for solar water splitting because of its wide spectrum solar energy utilization up to 600 nm and suitable energy band position straddling the water splitting redox reactions. However, its development has long been impeded by poor compatibility with electrolytes. Herein, we demonstrate a simple sputtering‐nitridation process to fabricate high‐performance Ta3N5 film photoanodes owing to successful synthesis of the vital TaOδ precursors. An effective GaN coating strategy is developed to remarkably stabilize Ta3N5 by forming a crystalline nitride‐on‐nitride structure with an improved nitride/electrolyte interface. A stable, high photocurrent density of 8 mA cm−2 was obtained with a CoPi/GaN/Ta3N5 photoanode at 1.2 VRHE under simulated sunlight, with O2 and H2 generated at a Faraday efficiency of unity over 12 h. Our vapor‐phase deposition method can be used to fabricate high‐performance (oxy)nitrides for practical photoelectrochemical applications.
Solar energy conversion: A simple and reliable vapor‐phase deposition technique is developed for fabricating GaN/Ta3N5 thin films that achieve state‐of‐the‐art solar water splitting performance and stability. The GaN overcoating strategy is readily applicable to stabilize various promising (oxy)nitrides for practical photo‐electrochemical applications.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/anie.201700117</doi><tpages>5</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0001-7995-4832</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7851 |
ispartof | Angewandte Chemie International Edition, 2017-04, Vol.56 (17), p.4739-4743 |
issn | 1433-7851 1521-3773 |
language | eng |
recordid | cdi_proquest_journals_1958515790 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Coating effects electrochemistry Energy consumption Energy utilization Gallium nitrides Oxidation Photoanodes photochemistry Photoelectric effect Photoelectric emission Redox reactions Solar energy solar energy conversion Splitting Thin films Water heaters Water splitting |
title | Highly Active GaN‐Stabilized Ta3N5 Thin‐Film Photoanode for Solar Water Oxidation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T10%3A54%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20Active%20GaN%E2%80%90Stabilized%20Ta3N5%20Thin%E2%80%90Film%20Photoanode%20for%20Solar%20Water%20Oxidation&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Zhong,%20Miao&rft.date=2017-04-18&rft.volume=56&rft.issue=17&rft.spage=4739&rft.epage=4743&rft.pages=4739-4743&rft.issn=1433-7851&rft.eissn=1521-3773&rft.coden=ACIEAY&rft_id=info:doi/10.1002/anie.201700117&rft_dat=%3Cproquest_wiley%3E4321496361%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1884795303&rft_id=info:pmid/&rfr_iscdi=true |