Highly Active GaN‐Stabilized Ta3N5 Thin‐Film Photoanode for Solar Water Oxidation

Ta3N5 is a very promising photocatalyst for solar water splitting because of its wide spectrum solar energy utilization up to 600 nm and suitable energy band position straddling the water splitting redox reactions. However, its development has long been impeded by poor compatibility with electrolyte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2017-04, Vol.56 (17), p.4739-4743
Hauptverfasser: Zhong, Miao, Hisatomi, Takashi, Sasaki, Yutaka, Suzuki, Sayaka, Teshima, Katsuya, Nakabayashi, Mamiko, Shibata, Naoya, Nishiyama, Hiroshi, Katayama, Masao, Yamada, Taro, Domen, Kazunari
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4743
container_issue 17
container_start_page 4739
container_title Angewandte Chemie International Edition
container_volume 56
creator Zhong, Miao
Hisatomi, Takashi
Sasaki, Yutaka
Suzuki, Sayaka
Teshima, Katsuya
Nakabayashi, Mamiko
Shibata, Naoya
Nishiyama, Hiroshi
Katayama, Masao
Yamada, Taro
Domen, Kazunari
description Ta3N5 is a very promising photocatalyst for solar water splitting because of its wide spectrum solar energy utilization up to 600 nm and suitable energy band position straddling the water splitting redox reactions. However, its development has long been impeded by poor compatibility with electrolytes. Herein, we demonstrate a simple sputtering‐nitridation process to fabricate high‐performance Ta3N5 film photoanodes owing to successful synthesis of the vital TaOδ precursors. An effective GaN coating strategy is developed to remarkably stabilize Ta3N5 by forming a crystalline nitride‐on‐nitride structure with an improved nitride/electrolyte interface. A stable, high photocurrent density of 8 mA cm−2 was obtained with a CoPi/GaN/Ta3N5 photoanode at 1.2 VRHE under simulated sunlight, with O2 and H2 generated at a Faraday efficiency of unity over 12 h. Our vapor‐phase deposition method can be used to fabricate high‐performance (oxy)nitrides for practical photoelectrochemical applications. Solar energy conversion: A simple and reliable vapor‐phase deposition technique is developed for fabricating GaN/Ta3N5 thin films that achieve state‐of‐the‐art solar water splitting performance and stability. The GaN overcoating strategy is readily applicable to stabilize various promising (oxy)nitrides for practical photo‐electrochemical applications.
doi_str_mv 10.1002/anie.201700117
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_1958515790</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4321496361</sourcerecordid><originalsourceid>FETCH-LOGICAL-g3647-fcf170b9d8e67cba3f1bd73c7a899442627c5d61cf4ea6a1f64825add176f3303</originalsourceid><addsrcrecordid>eNp9kMtOAjEUhhujiYhuXTdxPdhOp5dZEsItIWACxGXTmbZQMkxxZhBx5SP4jD6JJRiWrs4lX_7znx-AR4w6GKH4WZXOdGKEOUIY8yvQwjTGEeGcXIc-ISTiguJbcFfXm8ALgVgLLEdutS6OsJs37t3AoZr-fH3PG5W5wn0aDReKTClcrF0Z9gNXbOHL2jdelV4baH0F575QFXxVjang7MNp1Thf3oMbq4raPPzVNlgO-oveKJrMhuNedxKtCEt4ZHMb3GapFobxPFPE4kxzknMl0jRJYhbznGqGc5sYxRS2LBExVVpjziwhiLTB01l3V_m3vakbufH7qgwnJU5p-Jby9H9KiISnNEgFKj1TB1eYo9xVbquqo8RIntKVp3TlJV3ZnY77l4n8AioncH8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1884795303</pqid></control><display><type>article</type><title>Highly Active GaN‐Stabilized Ta3N5 Thin‐Film Photoanode for Solar Water Oxidation</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zhong, Miao ; Hisatomi, Takashi ; Sasaki, Yutaka ; Suzuki, Sayaka ; Teshima, Katsuya ; Nakabayashi, Mamiko ; Shibata, Naoya ; Nishiyama, Hiroshi ; Katayama, Masao ; Yamada, Taro ; Domen, Kazunari</creator><creatorcontrib>Zhong, Miao ; Hisatomi, Takashi ; Sasaki, Yutaka ; Suzuki, Sayaka ; Teshima, Katsuya ; Nakabayashi, Mamiko ; Shibata, Naoya ; Nishiyama, Hiroshi ; Katayama, Masao ; Yamada, Taro ; Domen, Kazunari</creatorcontrib><description>Ta3N5 is a very promising photocatalyst for solar water splitting because of its wide spectrum solar energy utilization up to 600 nm and suitable energy band position straddling the water splitting redox reactions. However, its development has long been impeded by poor compatibility with electrolytes. Herein, we demonstrate a simple sputtering‐nitridation process to fabricate high‐performance Ta3N5 film photoanodes owing to successful synthesis of the vital TaOδ precursors. An effective GaN coating strategy is developed to remarkably stabilize Ta3N5 by forming a crystalline nitride‐on‐nitride structure with an improved nitride/electrolyte interface. A stable, high photocurrent density of 8 mA cm−2 was obtained with a CoPi/GaN/Ta3N5 photoanode at 1.2 VRHE under simulated sunlight, with O2 and H2 generated at a Faraday efficiency of unity over 12 h. Our vapor‐phase deposition method can be used to fabricate high‐performance (oxy)nitrides for practical photoelectrochemical applications. Solar energy conversion: A simple and reliable vapor‐phase deposition technique is developed for fabricating GaN/Ta3N5 thin films that achieve state‐of‐the‐art solar water splitting performance and stability. The GaN overcoating strategy is readily applicable to stabilize various promising (oxy)nitrides for practical photo‐electrochemical applications.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.201700117</identifier><identifier>CODEN: ACIEAY</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Coating effects ; electrochemistry ; Energy consumption ; Energy utilization ; Gallium nitrides ; Oxidation ; Photoanodes ; photochemistry ; Photoelectric effect ; Photoelectric emission ; Redox reactions ; Solar energy ; solar energy conversion ; Splitting ; Thin films ; Water heaters ; Water splitting</subject><ispartof>Angewandte Chemie International Edition, 2017-04, Vol.56 (17), p.4739-4743</ispartof><rights>2017 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2017 Wiley-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-7995-4832</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.201700117$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.201700117$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Zhong, Miao</creatorcontrib><creatorcontrib>Hisatomi, Takashi</creatorcontrib><creatorcontrib>Sasaki, Yutaka</creatorcontrib><creatorcontrib>Suzuki, Sayaka</creatorcontrib><creatorcontrib>Teshima, Katsuya</creatorcontrib><creatorcontrib>Nakabayashi, Mamiko</creatorcontrib><creatorcontrib>Shibata, Naoya</creatorcontrib><creatorcontrib>Nishiyama, Hiroshi</creatorcontrib><creatorcontrib>Katayama, Masao</creatorcontrib><creatorcontrib>Yamada, Taro</creatorcontrib><creatorcontrib>Domen, Kazunari</creatorcontrib><title>Highly Active GaN‐Stabilized Ta3N5 Thin‐Film Photoanode for Solar Water Oxidation</title><title>Angewandte Chemie International Edition</title><description>Ta3N5 is a very promising photocatalyst for solar water splitting because of its wide spectrum solar energy utilization up to 600 nm and suitable energy band position straddling the water splitting redox reactions. However, its development has long been impeded by poor compatibility with electrolytes. Herein, we demonstrate a simple sputtering‐nitridation process to fabricate high‐performance Ta3N5 film photoanodes owing to successful synthesis of the vital TaOδ precursors. An effective GaN coating strategy is developed to remarkably stabilize Ta3N5 by forming a crystalline nitride‐on‐nitride structure with an improved nitride/electrolyte interface. A stable, high photocurrent density of 8 mA cm−2 was obtained with a CoPi/GaN/Ta3N5 photoanode at 1.2 VRHE under simulated sunlight, with O2 and H2 generated at a Faraday efficiency of unity over 12 h. Our vapor‐phase deposition method can be used to fabricate high‐performance (oxy)nitrides for practical photoelectrochemical applications. Solar energy conversion: A simple and reliable vapor‐phase deposition technique is developed for fabricating GaN/Ta3N5 thin films that achieve state‐of‐the‐art solar water splitting performance and stability. The GaN overcoating strategy is readily applicable to stabilize various promising (oxy)nitrides for practical photo‐electrochemical applications.</description><subject>Coating effects</subject><subject>electrochemistry</subject><subject>Energy consumption</subject><subject>Energy utilization</subject><subject>Gallium nitrides</subject><subject>Oxidation</subject><subject>Photoanodes</subject><subject>photochemistry</subject><subject>Photoelectric effect</subject><subject>Photoelectric emission</subject><subject>Redox reactions</subject><subject>Solar energy</subject><subject>solar energy conversion</subject><subject>Splitting</subject><subject>Thin films</subject><subject>Water heaters</subject><subject>Water splitting</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOAjEUhhujiYhuXTdxPdhOp5dZEsItIWACxGXTmbZQMkxxZhBx5SP4jD6JJRiWrs4lX_7znx-AR4w6GKH4WZXOdGKEOUIY8yvQwjTGEeGcXIc-ISTiguJbcFfXm8ALgVgLLEdutS6OsJs37t3AoZr-fH3PG5W5wn0aDReKTClcrF0Z9gNXbOHL2jdelV4baH0F575QFXxVjang7MNp1Thf3oMbq4raPPzVNlgO-oveKJrMhuNedxKtCEt4ZHMb3GapFobxPFPE4kxzknMl0jRJYhbznGqGc5sYxRS2LBExVVpjziwhiLTB01l3V_m3vakbufH7qgwnJU5p-Jby9H9KiISnNEgFKj1TB1eYo9xVbquqo8RIntKVp3TlJV3ZnY77l4n8AioncH8</recordid><startdate>20170418</startdate><enddate>20170418</enddate><creator>Zhong, Miao</creator><creator>Hisatomi, Takashi</creator><creator>Sasaki, Yutaka</creator><creator>Suzuki, Sayaka</creator><creator>Teshima, Katsuya</creator><creator>Nakabayashi, Mamiko</creator><creator>Shibata, Naoya</creator><creator>Nishiyama, Hiroshi</creator><creator>Katayama, Masao</creator><creator>Yamada, Taro</creator><creator>Domen, Kazunari</creator><general>Wiley Subscription Services, Inc</general><scope>7TM</scope><scope>K9.</scope><orcidid>https://orcid.org/0000-0001-7995-4832</orcidid></search><sort><creationdate>20170418</creationdate><title>Highly Active GaN‐Stabilized Ta3N5 Thin‐Film Photoanode for Solar Water Oxidation</title><author>Zhong, Miao ; Hisatomi, Takashi ; Sasaki, Yutaka ; Suzuki, Sayaka ; Teshima, Katsuya ; Nakabayashi, Mamiko ; Shibata, Naoya ; Nishiyama, Hiroshi ; Katayama, Masao ; Yamada, Taro ; Domen, Kazunari</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g3647-fcf170b9d8e67cba3f1bd73c7a899442627c5d61cf4ea6a1f64825add176f3303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Coating effects</topic><topic>electrochemistry</topic><topic>Energy consumption</topic><topic>Energy utilization</topic><topic>Gallium nitrides</topic><topic>Oxidation</topic><topic>Photoanodes</topic><topic>photochemistry</topic><topic>Photoelectric effect</topic><topic>Photoelectric emission</topic><topic>Redox reactions</topic><topic>Solar energy</topic><topic>solar energy conversion</topic><topic>Splitting</topic><topic>Thin films</topic><topic>Water heaters</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhong, Miao</creatorcontrib><creatorcontrib>Hisatomi, Takashi</creatorcontrib><creatorcontrib>Sasaki, Yutaka</creatorcontrib><creatorcontrib>Suzuki, Sayaka</creatorcontrib><creatorcontrib>Teshima, Katsuya</creatorcontrib><creatorcontrib>Nakabayashi, Mamiko</creatorcontrib><creatorcontrib>Shibata, Naoya</creatorcontrib><creatorcontrib>Nishiyama, Hiroshi</creatorcontrib><creatorcontrib>Katayama, Masao</creatorcontrib><creatorcontrib>Yamada, Taro</creatorcontrib><creatorcontrib>Domen, Kazunari</creatorcontrib><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhong, Miao</au><au>Hisatomi, Takashi</au><au>Sasaki, Yutaka</au><au>Suzuki, Sayaka</au><au>Teshima, Katsuya</au><au>Nakabayashi, Mamiko</au><au>Shibata, Naoya</au><au>Nishiyama, Hiroshi</au><au>Katayama, Masao</au><au>Yamada, Taro</au><au>Domen, Kazunari</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly Active GaN‐Stabilized Ta3N5 Thin‐Film Photoanode for Solar Water Oxidation</atitle><jtitle>Angewandte Chemie International Edition</jtitle><date>2017-04-18</date><risdate>2017</risdate><volume>56</volume><issue>17</issue><spage>4739</spage><epage>4743</epage><pages>4739-4743</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><coden>ACIEAY</coden><abstract>Ta3N5 is a very promising photocatalyst for solar water splitting because of its wide spectrum solar energy utilization up to 600 nm and suitable energy band position straddling the water splitting redox reactions. However, its development has long been impeded by poor compatibility with electrolytes. Herein, we demonstrate a simple sputtering‐nitridation process to fabricate high‐performance Ta3N5 film photoanodes owing to successful synthesis of the vital TaOδ precursors. An effective GaN coating strategy is developed to remarkably stabilize Ta3N5 by forming a crystalline nitride‐on‐nitride structure with an improved nitride/electrolyte interface. A stable, high photocurrent density of 8 mA cm−2 was obtained with a CoPi/GaN/Ta3N5 photoanode at 1.2 VRHE under simulated sunlight, with O2 and H2 generated at a Faraday efficiency of unity over 12 h. Our vapor‐phase deposition method can be used to fabricate high‐performance (oxy)nitrides for practical photoelectrochemical applications. Solar energy conversion: A simple and reliable vapor‐phase deposition technique is developed for fabricating GaN/Ta3N5 thin films that achieve state‐of‐the‐art solar water splitting performance and stability. The GaN overcoating strategy is readily applicable to stabilize various promising (oxy)nitrides for practical photo‐electrochemical applications.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/anie.201700117</doi><tpages>5</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0001-7995-4832</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2017-04, Vol.56 (17), p.4739-4743
issn 1433-7851
1521-3773
language eng
recordid cdi_proquest_journals_1958515790
source Wiley Online Library Journals Frontfile Complete
subjects Coating effects
electrochemistry
Energy consumption
Energy utilization
Gallium nitrides
Oxidation
Photoanodes
photochemistry
Photoelectric effect
Photoelectric emission
Redox reactions
Solar energy
solar energy conversion
Splitting
Thin films
Water heaters
Water splitting
title Highly Active GaN‐Stabilized Ta3N5 Thin‐Film Photoanode for Solar Water Oxidation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T10%3A54%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20Active%20GaN%E2%80%90Stabilized%20Ta3N5%20Thin%E2%80%90Film%20Photoanode%20for%20Solar%20Water%20Oxidation&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Zhong,%20Miao&rft.date=2017-04-18&rft.volume=56&rft.issue=17&rft.spage=4739&rft.epage=4743&rft.pages=4739-4743&rft.issn=1433-7851&rft.eissn=1521-3773&rft.coden=ACIEAY&rft_id=info:doi/10.1002/anie.201700117&rft_dat=%3Cproquest_wiley%3E4321496361%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1884795303&rft_id=info:pmid/&rfr_iscdi=true