Enhanced the breakdown strength and energy density in flexible composite films via optimizing electric field distribution
High energy density flexible composite films have been used for the modern compact electronic devices and electric power systems. A novel nanocomposite film is developed by embedding polydopamine encapsulated Ba 0.6 Sr 0.4 TiO 3 nanoparticles (BST NPs) in the polyvinylidene fluoride polymer matrix....
Gespeichert in:
Veröffentlicht in: | Journal of materials science. Materials in electronics 2017-12, Vol.28 (23), p.18200-18206 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 18206 |
---|---|
container_issue | 23 |
container_start_page | 18200 |
container_title | Journal of materials science. Materials in electronics |
container_volume | 28 |
creator | Chen, Jianwen Yu, Xinmei Fan, Yun Duan, Zhikui Jiang, Yewen Yang, Faquan |
description | High energy density flexible composite films have been used for the modern compact electronic devices and electric power systems. A novel nanocomposite film is developed by embedding polydopamine encapsulated Ba
0.6
Sr
0.4
TiO
3
nanoparticles (BST NPs) in the polyvinylidene fluoride polymer matrix. The surface functionalization of BST NPs with polydopamine facilitates favorable interaction between the particle and polymer phase, enhancing nanoparticle dispersion. The elaborate functionalization of BST NPs with polydopamine has guaranteed both the increase of dielectric constant and the maintenance of breakdown strength, resulting in significantly enhanced energy storage capability. A finite element simulation of electric field and electric current density distribution suggested the functionalized BST NPs significantly enhanced the breakdown strength and energy density of the composite films. The nanocomposite with 2.5 vol% functionalized BST NPs displays a high energy density of 6.3 J cm
−3
at the low field of 3500 kV m
−1
, which is larger than that of the biaxially oriented polypropylenes (BOPP) (1.2 J cm
−3
at the field of 6400 kV m
−1
). Therefore, the proposed flexible composites films would also find their potential application prospects in electrical devices such as mobile electronic devices, hybrid electric vehicles and military. |
doi_str_mv | 10.1007/s10854-017-7766-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1958499094</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1958499094</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-8036f696b69cab24502b4b3877067b24b83a3c59acc425f9290d852ca77ba5e83</originalsourceid><addsrcrecordid>eNp1kEtrGzEQx0VJIK6bD5CboOdtJa2ex2KcBwR6SaA3IWlnbaVrrSvJTdxPXxn30EtOw8z8H_BD6IaSL5QQ9bVQogXvCFWdUlJ25gNaUKH6jmv24wItiBGq44KxK_SxlBdCiOS9XqDjOm1dCjDgugXsM7ifw_yacKkZ0qZusUsDhgR5c8QDpBLrEceExwneop8Ah3m3n9sV8BinXcG_o8PzvsZd_BPTBsMEoeYY2hemAQ-x5UZ_qHFOn9Dl6KYC1__mEj3frp9W993j97uH1bfHLvRU1k6TXo7SSC9NcJ5xQZjnvtdKEana7nXv-iCMC4EzMRpmyKAFC04p7wTofok-n3P3ef51gFLty3zIqVVaaoTmxhDDm4qeVSHPpWQY7T7HnctHS4k9EbZnwrYRtifC1jQPO3tK06YN5P-S3zX9BclCgI8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1958499094</pqid></control><display><type>article</type><title>Enhanced the breakdown strength and energy density in flexible composite films via optimizing electric field distribution</title><source>SpringerNature Journals</source><creator>Chen, Jianwen ; Yu, Xinmei ; Fan, Yun ; Duan, Zhikui ; Jiang, Yewen ; Yang, Faquan</creator><creatorcontrib>Chen, Jianwen ; Yu, Xinmei ; Fan, Yun ; Duan, Zhikui ; Jiang, Yewen ; Yang, Faquan</creatorcontrib><description>High energy density flexible composite films have been used for the modern compact electronic devices and electric power systems. A novel nanocomposite film is developed by embedding polydopamine encapsulated Ba
0.6
Sr
0.4
TiO
3
nanoparticles (BST NPs) in the polyvinylidene fluoride polymer matrix. The surface functionalization of BST NPs with polydopamine facilitates favorable interaction between the particle and polymer phase, enhancing nanoparticle dispersion. The elaborate functionalization of BST NPs with polydopamine has guaranteed both the increase of dielectric constant and the maintenance of breakdown strength, resulting in significantly enhanced energy storage capability. A finite element simulation of electric field and electric current density distribution suggested the functionalized BST NPs significantly enhanced the breakdown strength and energy density of the composite films. The nanocomposite with 2.5 vol% functionalized BST NPs displays a high energy density of 6.3 J cm
−3
at the low field of 3500 kV m
−1
, which is larger than that of the biaxially oriented polypropylenes (BOPP) (1.2 J cm
−3
at the field of 6400 kV m
−1
). Therefore, the proposed flexible composites films would also find their potential application prospects in electrical devices such as mobile electronic devices, hybrid electric vehicles and military.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-017-7766-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Breakdowns ; Characterization and Evaluation of Materials ; Chemical industry ; Chemistry and Materials Science ; Current distribution ; Density distribution ; Dielectric breakdown ; Dielectric strength ; Electric fields ; Electric power distribution ; Electric power systems ; Electric vehicles ; Electronic devices ; Embedded systems ; Energy distribution ; Energy storage ; Finite element method ; Flux density ; Hybrid electric vehicles ; Materials Science ; Nanocomposites ; Nanoparticles ; Optical and Electronic Materials ; Polyvinylidene fluorides</subject><ispartof>Journal of materials science. Materials in electronics, 2017-12, Vol.28 (23), p.18200-18206</ispartof><rights>Springer Science+Business Media, LLC 2017</rights><rights>Journal of Materials Science: Materials in Electronics is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-8036f696b69cab24502b4b3877067b24b83a3c59acc425f9290d852ca77ba5e83</citedby><cites>FETCH-LOGICAL-c316t-8036f696b69cab24502b4b3877067b24b83a3c59acc425f9290d852ca77ba5e83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10854-017-7766-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10854-017-7766-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Chen, Jianwen</creatorcontrib><creatorcontrib>Yu, Xinmei</creatorcontrib><creatorcontrib>Fan, Yun</creatorcontrib><creatorcontrib>Duan, Zhikui</creatorcontrib><creatorcontrib>Jiang, Yewen</creatorcontrib><creatorcontrib>Yang, Faquan</creatorcontrib><title>Enhanced the breakdown strength and energy density in flexible composite films via optimizing electric field distribution</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>High energy density flexible composite films have been used for the modern compact electronic devices and electric power systems. A novel nanocomposite film is developed by embedding polydopamine encapsulated Ba
0.6
Sr
0.4
TiO
3
nanoparticles (BST NPs) in the polyvinylidene fluoride polymer matrix. The surface functionalization of BST NPs with polydopamine facilitates favorable interaction between the particle and polymer phase, enhancing nanoparticle dispersion. The elaborate functionalization of BST NPs with polydopamine has guaranteed both the increase of dielectric constant and the maintenance of breakdown strength, resulting in significantly enhanced energy storage capability. A finite element simulation of electric field and electric current density distribution suggested the functionalized BST NPs significantly enhanced the breakdown strength and energy density of the composite films. The nanocomposite with 2.5 vol% functionalized BST NPs displays a high energy density of 6.3 J cm
−3
at the low field of 3500 kV m
−1
, which is larger than that of the biaxially oriented polypropylenes (BOPP) (1.2 J cm
−3
at the field of 6400 kV m
−1
). Therefore, the proposed flexible composites films would also find their potential application prospects in electrical devices such as mobile electronic devices, hybrid electric vehicles and military.</description><subject>Breakdowns</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical industry</subject><subject>Chemistry and Materials Science</subject><subject>Current distribution</subject><subject>Density distribution</subject><subject>Dielectric breakdown</subject><subject>Dielectric strength</subject><subject>Electric fields</subject><subject>Electric power distribution</subject><subject>Electric power systems</subject><subject>Electric vehicles</subject><subject>Electronic devices</subject><subject>Embedded systems</subject><subject>Energy distribution</subject><subject>Energy storage</subject><subject>Finite element method</subject><subject>Flux density</subject><subject>Hybrid electric vehicles</subject><subject>Materials Science</subject><subject>Nanocomposites</subject><subject>Nanoparticles</subject><subject>Optical and Electronic Materials</subject><subject>Polyvinylidene fluorides</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kEtrGzEQx0VJIK6bD5CboOdtJa2ex2KcBwR6SaA3IWlnbaVrrSvJTdxPXxn30EtOw8z8H_BD6IaSL5QQ9bVQogXvCFWdUlJ25gNaUKH6jmv24wItiBGq44KxK_SxlBdCiOS9XqDjOm1dCjDgugXsM7ifw_yacKkZ0qZusUsDhgR5c8QDpBLrEceExwneop8Ah3m3n9sV8BinXcG_o8PzvsZd_BPTBsMEoeYY2hemAQ-x5UZ_qHFOn9Dl6KYC1__mEj3frp9W993j97uH1bfHLvRU1k6TXo7SSC9NcJ5xQZjnvtdKEana7nXv-iCMC4EzMRpmyKAFC04p7wTofok-n3P3ef51gFLty3zIqVVaaoTmxhDDm4qeVSHPpWQY7T7HnctHS4k9EbZnwrYRtifC1jQPO3tK06YN5P-S3zX9BclCgI8</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Chen, Jianwen</creator><creator>Yu, Xinmei</creator><creator>Fan, Yun</creator><creator>Duan, Zhikui</creator><creator>Jiang, Yewen</creator><creator>Yang, Faquan</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope></search><sort><creationdate>20171201</creationdate><title>Enhanced the breakdown strength and energy density in flexible composite films via optimizing electric field distribution</title><author>Chen, Jianwen ; Yu, Xinmei ; Fan, Yun ; Duan, Zhikui ; Jiang, Yewen ; Yang, Faquan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-8036f696b69cab24502b4b3877067b24b83a3c59acc425f9290d852ca77ba5e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Breakdowns</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical industry</topic><topic>Chemistry and Materials Science</topic><topic>Current distribution</topic><topic>Density distribution</topic><topic>Dielectric breakdown</topic><topic>Dielectric strength</topic><topic>Electric fields</topic><topic>Electric power distribution</topic><topic>Electric power systems</topic><topic>Electric vehicles</topic><topic>Electronic devices</topic><topic>Embedded systems</topic><topic>Energy distribution</topic><topic>Energy storage</topic><topic>Finite element method</topic><topic>Flux density</topic><topic>Hybrid electric vehicles</topic><topic>Materials Science</topic><topic>Nanocomposites</topic><topic>Nanoparticles</topic><topic>Optical and Electronic Materials</topic><topic>Polyvinylidene fluorides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Jianwen</creatorcontrib><creatorcontrib>Yu, Xinmei</creatorcontrib><creatorcontrib>Fan, Yun</creatorcontrib><creatorcontrib>Duan, Zhikui</creatorcontrib><creatorcontrib>Jiang, Yewen</creatorcontrib><creatorcontrib>Yang, Faquan</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Jianwen</au><au>Yu, Xinmei</au><au>Fan, Yun</au><au>Duan, Zhikui</au><au>Jiang, Yewen</au><au>Yang, Faquan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced the breakdown strength and energy density in flexible composite films via optimizing electric field distribution</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2017-12-01</date><risdate>2017</risdate><volume>28</volume><issue>23</issue><spage>18200</spage><epage>18206</epage><pages>18200-18206</pages><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>High energy density flexible composite films have been used for the modern compact electronic devices and electric power systems. A novel nanocomposite film is developed by embedding polydopamine encapsulated Ba
0.6
Sr
0.4
TiO
3
nanoparticles (BST NPs) in the polyvinylidene fluoride polymer matrix. The surface functionalization of BST NPs with polydopamine facilitates favorable interaction between the particle and polymer phase, enhancing nanoparticle dispersion. The elaborate functionalization of BST NPs with polydopamine has guaranteed both the increase of dielectric constant and the maintenance of breakdown strength, resulting in significantly enhanced energy storage capability. A finite element simulation of electric field and electric current density distribution suggested the functionalized BST NPs significantly enhanced the breakdown strength and energy density of the composite films. The nanocomposite with 2.5 vol% functionalized BST NPs displays a high energy density of 6.3 J cm
−3
at the low field of 3500 kV m
−1
, which is larger than that of the biaxially oriented polypropylenes (BOPP) (1.2 J cm
−3
at the field of 6400 kV m
−1
). Therefore, the proposed flexible composites films would also find their potential application prospects in electrical devices such as mobile electronic devices, hybrid electric vehicles and military.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-017-7766-9</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4522 |
ispartof | Journal of materials science. Materials in electronics, 2017-12, Vol.28 (23), p.18200-18206 |
issn | 0957-4522 1573-482X |
language | eng |
recordid | cdi_proquest_journals_1958499094 |
source | SpringerNature Journals |
subjects | Breakdowns Characterization and Evaluation of Materials Chemical industry Chemistry and Materials Science Current distribution Density distribution Dielectric breakdown Dielectric strength Electric fields Electric power distribution Electric power systems Electric vehicles Electronic devices Embedded systems Energy distribution Energy storage Finite element method Flux density Hybrid electric vehicles Materials Science Nanocomposites Nanoparticles Optical and Electronic Materials Polyvinylidene fluorides |
title | Enhanced the breakdown strength and energy density in flexible composite films via optimizing electric field distribution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T13%3A07%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20the%20breakdown%20strength%20and%20energy%20density%20in%20flexible%20composite%20films%20via%20optimizing%20electric%20field%20distribution&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Chen,%20Jianwen&rft.date=2017-12-01&rft.volume=28&rft.issue=23&rft.spage=18200&rft.epage=18206&rft.pages=18200-18206&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-017-7766-9&rft_dat=%3Cproquest_cross%3E1958499094%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1958499094&rft_id=info:pmid/&rfr_iscdi=true |