Enhanced the breakdown strength and energy density in flexible composite films via optimizing electric field distribution

High energy density flexible composite films have been used for the modern compact electronic devices and electric power systems. A novel nanocomposite film is developed by embedding polydopamine encapsulated Ba 0.6 Sr 0.4 TiO 3 nanoparticles (BST NPs) in the polyvinylidene fluoride polymer matrix....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science. Materials in electronics 2017-12, Vol.28 (23), p.18200-18206
Hauptverfasser: Chen, Jianwen, Yu, Xinmei, Fan, Yun, Duan, Zhikui, Jiang, Yewen, Yang, Faquan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 18206
container_issue 23
container_start_page 18200
container_title Journal of materials science. Materials in electronics
container_volume 28
creator Chen, Jianwen
Yu, Xinmei
Fan, Yun
Duan, Zhikui
Jiang, Yewen
Yang, Faquan
description High energy density flexible composite films have been used for the modern compact electronic devices and electric power systems. A novel nanocomposite film is developed by embedding polydopamine encapsulated Ba 0.6 Sr 0.4 TiO 3 nanoparticles (BST NPs) in the polyvinylidene fluoride polymer matrix. The surface functionalization of BST NPs with polydopamine facilitates favorable interaction between the particle and polymer phase, enhancing nanoparticle dispersion. The elaborate functionalization of BST NPs with polydopamine has guaranteed both the increase of dielectric constant and the maintenance of breakdown strength, resulting in significantly enhanced energy storage capability. A finite element simulation of electric field and electric current density distribution suggested the functionalized BST NPs significantly enhanced the breakdown strength and energy density of the composite films. The nanocomposite with 2.5 vol% functionalized BST NPs displays a high energy density of 6.3 J cm −3 at the low field of 3500 kV m −1 , which is larger than that of the biaxially oriented polypropylenes (BOPP) (1.2 J cm −3 at the field of 6400 kV m −1 ). Therefore, the proposed flexible composites films would also find their potential application prospects in electrical devices such as mobile electronic devices, hybrid electric vehicles and military.
doi_str_mv 10.1007/s10854-017-7766-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1958499094</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1958499094</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-8036f696b69cab24502b4b3877067b24b83a3c59acc425f9290d852ca77ba5e83</originalsourceid><addsrcrecordid>eNp1kEtrGzEQx0VJIK6bD5CboOdtJa2ex2KcBwR6SaA3IWlnbaVrrSvJTdxPXxn30EtOw8z8H_BD6IaSL5QQ9bVQogXvCFWdUlJ25gNaUKH6jmv24wItiBGq44KxK_SxlBdCiOS9XqDjOm1dCjDgugXsM7ifw_yacKkZ0qZusUsDhgR5c8QDpBLrEceExwneop8Ah3m3n9sV8BinXcG_o8PzvsZd_BPTBsMEoeYY2hemAQ-x5UZ_qHFOn9Dl6KYC1__mEj3frp9W993j97uH1bfHLvRU1k6TXo7SSC9NcJ5xQZjnvtdKEana7nXv-iCMC4EzMRpmyKAFC04p7wTofok-n3P3ef51gFLty3zIqVVaaoTmxhDDm4qeVSHPpWQY7T7HnctHS4k9EbZnwrYRtifC1jQPO3tK06YN5P-S3zX9BclCgI8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1958499094</pqid></control><display><type>article</type><title>Enhanced the breakdown strength and energy density in flexible composite films via optimizing electric field distribution</title><source>SpringerNature Journals</source><creator>Chen, Jianwen ; Yu, Xinmei ; Fan, Yun ; Duan, Zhikui ; Jiang, Yewen ; Yang, Faquan</creator><creatorcontrib>Chen, Jianwen ; Yu, Xinmei ; Fan, Yun ; Duan, Zhikui ; Jiang, Yewen ; Yang, Faquan</creatorcontrib><description>High energy density flexible composite films have been used for the modern compact electronic devices and electric power systems. A novel nanocomposite film is developed by embedding polydopamine encapsulated Ba 0.6 Sr 0.4 TiO 3 nanoparticles (BST NPs) in the polyvinylidene fluoride polymer matrix. The surface functionalization of BST NPs with polydopamine facilitates favorable interaction between the particle and polymer phase, enhancing nanoparticle dispersion. The elaborate functionalization of BST NPs with polydopamine has guaranteed both the increase of dielectric constant and the maintenance of breakdown strength, resulting in significantly enhanced energy storage capability. A finite element simulation of electric field and electric current density distribution suggested the functionalized BST NPs significantly enhanced the breakdown strength and energy density of the composite films. The nanocomposite with 2.5 vol% functionalized BST NPs displays a high energy density of 6.3 J cm −3 at the low field of 3500 kV m −1 , which is larger than that of the biaxially oriented polypropylenes (BOPP) (1.2 J cm −3 at the field of 6400 kV m −1 ). Therefore, the proposed flexible composites films would also find their potential application prospects in electrical devices such as mobile electronic devices, hybrid electric vehicles and military.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-017-7766-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Breakdowns ; Characterization and Evaluation of Materials ; Chemical industry ; Chemistry and Materials Science ; Current distribution ; Density distribution ; Dielectric breakdown ; Dielectric strength ; Electric fields ; Electric power distribution ; Electric power systems ; Electric vehicles ; Electronic devices ; Embedded systems ; Energy distribution ; Energy storage ; Finite element method ; Flux density ; Hybrid electric vehicles ; Materials Science ; Nanocomposites ; Nanoparticles ; Optical and Electronic Materials ; Polyvinylidene fluorides</subject><ispartof>Journal of materials science. Materials in electronics, 2017-12, Vol.28 (23), p.18200-18206</ispartof><rights>Springer Science+Business Media, LLC 2017</rights><rights>Journal of Materials Science: Materials in Electronics is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-8036f696b69cab24502b4b3877067b24b83a3c59acc425f9290d852ca77ba5e83</citedby><cites>FETCH-LOGICAL-c316t-8036f696b69cab24502b4b3877067b24b83a3c59acc425f9290d852ca77ba5e83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10854-017-7766-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10854-017-7766-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Chen, Jianwen</creatorcontrib><creatorcontrib>Yu, Xinmei</creatorcontrib><creatorcontrib>Fan, Yun</creatorcontrib><creatorcontrib>Duan, Zhikui</creatorcontrib><creatorcontrib>Jiang, Yewen</creatorcontrib><creatorcontrib>Yang, Faquan</creatorcontrib><title>Enhanced the breakdown strength and energy density in flexible composite films via optimizing electric field distribution</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>High energy density flexible composite films have been used for the modern compact electronic devices and electric power systems. A novel nanocomposite film is developed by embedding polydopamine encapsulated Ba 0.6 Sr 0.4 TiO 3 nanoparticles (BST NPs) in the polyvinylidene fluoride polymer matrix. The surface functionalization of BST NPs with polydopamine facilitates favorable interaction between the particle and polymer phase, enhancing nanoparticle dispersion. The elaborate functionalization of BST NPs with polydopamine has guaranteed both the increase of dielectric constant and the maintenance of breakdown strength, resulting in significantly enhanced energy storage capability. A finite element simulation of electric field and electric current density distribution suggested the functionalized BST NPs significantly enhanced the breakdown strength and energy density of the composite films. The nanocomposite with 2.5 vol% functionalized BST NPs displays a high energy density of 6.3 J cm −3 at the low field of 3500 kV m −1 , which is larger than that of the biaxially oriented polypropylenes (BOPP) (1.2 J cm −3 at the field of 6400 kV m −1 ). Therefore, the proposed flexible composites films would also find their potential application prospects in electrical devices such as mobile electronic devices, hybrid electric vehicles and military.</description><subject>Breakdowns</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical industry</subject><subject>Chemistry and Materials Science</subject><subject>Current distribution</subject><subject>Density distribution</subject><subject>Dielectric breakdown</subject><subject>Dielectric strength</subject><subject>Electric fields</subject><subject>Electric power distribution</subject><subject>Electric power systems</subject><subject>Electric vehicles</subject><subject>Electronic devices</subject><subject>Embedded systems</subject><subject>Energy distribution</subject><subject>Energy storage</subject><subject>Finite element method</subject><subject>Flux density</subject><subject>Hybrid electric vehicles</subject><subject>Materials Science</subject><subject>Nanocomposites</subject><subject>Nanoparticles</subject><subject>Optical and Electronic Materials</subject><subject>Polyvinylidene fluorides</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kEtrGzEQx0VJIK6bD5CboOdtJa2ex2KcBwR6SaA3IWlnbaVrrSvJTdxPXxn30EtOw8z8H_BD6IaSL5QQ9bVQogXvCFWdUlJ25gNaUKH6jmv24wItiBGq44KxK_SxlBdCiOS9XqDjOm1dCjDgugXsM7ifw_yacKkZ0qZusUsDhgR5c8QDpBLrEceExwneop8Ah3m3n9sV8BinXcG_o8PzvsZd_BPTBsMEoeYY2hemAQ-x5UZ_qHFOn9Dl6KYC1__mEj3frp9W993j97uH1bfHLvRU1k6TXo7SSC9NcJ5xQZjnvtdKEana7nXv-iCMC4EzMRpmyKAFC04p7wTofok-n3P3ef51gFLty3zIqVVaaoTmxhDDm4qeVSHPpWQY7T7HnctHS4k9EbZnwrYRtifC1jQPO3tK06YN5P-S3zX9BclCgI8</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Chen, Jianwen</creator><creator>Yu, Xinmei</creator><creator>Fan, Yun</creator><creator>Duan, Zhikui</creator><creator>Jiang, Yewen</creator><creator>Yang, Faquan</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope></search><sort><creationdate>20171201</creationdate><title>Enhanced the breakdown strength and energy density in flexible composite films via optimizing electric field distribution</title><author>Chen, Jianwen ; Yu, Xinmei ; Fan, Yun ; Duan, Zhikui ; Jiang, Yewen ; Yang, Faquan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-8036f696b69cab24502b4b3877067b24b83a3c59acc425f9290d852ca77ba5e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Breakdowns</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical industry</topic><topic>Chemistry and Materials Science</topic><topic>Current distribution</topic><topic>Density distribution</topic><topic>Dielectric breakdown</topic><topic>Dielectric strength</topic><topic>Electric fields</topic><topic>Electric power distribution</topic><topic>Electric power systems</topic><topic>Electric vehicles</topic><topic>Electronic devices</topic><topic>Embedded systems</topic><topic>Energy distribution</topic><topic>Energy storage</topic><topic>Finite element method</topic><topic>Flux density</topic><topic>Hybrid electric vehicles</topic><topic>Materials Science</topic><topic>Nanocomposites</topic><topic>Nanoparticles</topic><topic>Optical and Electronic Materials</topic><topic>Polyvinylidene fluorides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Jianwen</creatorcontrib><creatorcontrib>Yu, Xinmei</creatorcontrib><creatorcontrib>Fan, Yun</creatorcontrib><creatorcontrib>Duan, Zhikui</creatorcontrib><creatorcontrib>Jiang, Yewen</creatorcontrib><creatorcontrib>Yang, Faquan</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Jianwen</au><au>Yu, Xinmei</au><au>Fan, Yun</au><au>Duan, Zhikui</au><au>Jiang, Yewen</au><au>Yang, Faquan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced the breakdown strength and energy density in flexible composite films via optimizing electric field distribution</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2017-12-01</date><risdate>2017</risdate><volume>28</volume><issue>23</issue><spage>18200</spage><epage>18206</epage><pages>18200-18206</pages><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>High energy density flexible composite films have been used for the modern compact electronic devices and electric power systems. A novel nanocomposite film is developed by embedding polydopamine encapsulated Ba 0.6 Sr 0.4 TiO 3 nanoparticles (BST NPs) in the polyvinylidene fluoride polymer matrix. The surface functionalization of BST NPs with polydopamine facilitates favorable interaction between the particle and polymer phase, enhancing nanoparticle dispersion. The elaborate functionalization of BST NPs with polydopamine has guaranteed both the increase of dielectric constant and the maintenance of breakdown strength, resulting in significantly enhanced energy storage capability. A finite element simulation of electric field and electric current density distribution suggested the functionalized BST NPs significantly enhanced the breakdown strength and energy density of the composite films. The nanocomposite with 2.5 vol% functionalized BST NPs displays a high energy density of 6.3 J cm −3 at the low field of 3500 kV m −1 , which is larger than that of the biaxially oriented polypropylenes (BOPP) (1.2 J cm −3 at the field of 6400 kV m −1 ). Therefore, the proposed flexible composites films would also find their potential application prospects in electrical devices such as mobile electronic devices, hybrid electric vehicles and military.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-017-7766-9</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0957-4522
ispartof Journal of materials science. Materials in electronics, 2017-12, Vol.28 (23), p.18200-18206
issn 0957-4522
1573-482X
language eng
recordid cdi_proquest_journals_1958499094
source SpringerNature Journals
subjects Breakdowns
Characterization and Evaluation of Materials
Chemical industry
Chemistry and Materials Science
Current distribution
Density distribution
Dielectric breakdown
Dielectric strength
Electric fields
Electric power distribution
Electric power systems
Electric vehicles
Electronic devices
Embedded systems
Energy distribution
Energy storage
Finite element method
Flux density
Hybrid electric vehicles
Materials Science
Nanocomposites
Nanoparticles
Optical and Electronic Materials
Polyvinylidene fluorides
title Enhanced the breakdown strength and energy density in flexible composite films via optimizing electric field distribution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T13%3A07%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20the%20breakdown%20strength%20and%20energy%20density%20in%20flexible%20composite%20films%20via%20optimizing%20electric%20field%20distribution&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Chen,%20Jianwen&rft.date=2017-12-01&rft.volume=28&rft.issue=23&rft.spage=18200&rft.epage=18206&rft.pages=18200-18206&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-017-7766-9&rft_dat=%3Cproquest_cross%3E1958499094%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1958499094&rft_id=info:pmid/&rfr_iscdi=true