Designing catechol‐end functionalized poly(DMAm‐co‐NIPAM) by RAFT with tunable LCSTs

ABSTRACT Providing catechol‐end functionality to controlled structure lower critical solution temperature (LCST) copolymers is attractive, given the versatility of catechol chemistry for tethering to nanostructures. Controlled polymer chain lengths with catechol RAFT end groups are of interest to pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of polymer science. Part A, Polymer chemistry Polymer chemistry, 2017-12, Vol.55 (24), p.4062-4070
Hauptverfasser: Oyeneye, Olabode O., Xu, William Z., Charpentier, Paul A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4070
container_issue 24
container_start_page 4062
container_title Journal of polymer science. Part A, Polymer chemistry
container_volume 55
creator Oyeneye, Olabode O.
Xu, William Z.
Charpentier, Paul A.
description ABSTRACT Providing catechol‐end functionality to controlled structure lower critical solution temperature (LCST) copolymers is attractive, given the versatility of catechol chemistry for tethering to nanostructures. Controlled polymer chain lengths with catechol RAFT end groups are of interest to provide tunable LCST behavior to nanoparticles, although these polymerizations are relatively unexplored. Herein, the reactivity ratios for the RAFT copolymerization of N,N‐dimethylacrylamide (DMAm) and N‐isopropylacrylamide (NIPAM) pairs based on catechol‐end RAFT agents using an in situ NMR technique were first determined. Several catechol‐end poly(DMAm‐co‐NIPAM) samples were then prepared using the RAFT agent to provide copolymer. The reactivity ratios for the DMAm‐NIPAM pair were rDMAm = 1.28–1.31 and rNIPAM = 0.48–0.51. All the poly(DMAm‐co‐NIPAM) samples were found to have Mn values ≤ 26 kDa and Ð 
doi_str_mv 10.1002/pola.28879
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1958446417</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1958446417</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3389-f9b15ca250d79a0ba3b8942b5dadcf2e4c7df305cf8904b727f4d5f74513b0473</originalsourceid><addsrcrecordid>eNp9kNFKwzAUhoMoOKc3PkHAGxU6kzZZm8uyOR10bugE8SYkabJ11HY2LaNe-Qg-o09iZr325hw4_3d-zvkBOMdogBHyb7ZlLgZ-FIXsAPQwYsxDFEeHoIfczBv65OUYnFi7QchpNOqB17G22arIihVUotZqXebfn1-6SKFpClVnZSHy7EOn0Dm3l-NZ_OZkVbryMF3EsysoW_gYT5Zwl9VrWDeFkLmGyehpaU_BkRG51Wd_vQ-eJ7fL0b2XzO-mozjxVBBEzDNMYqqET1EaMoGkCGTEiC9pKlJlfE1UmJoAUWUihogM_dCQlJqQUBxIRMKgDy46321Vvjfa1nxTNpW723LsfiRkSPCeuu4oVZXWVtrwbZW9iarlGPF9dnyfHf_NzsG4g3dZrtt_SL6YJ3G38wOJXnOL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1958446417</pqid></control><display><type>article</type><title>Designing catechol‐end functionalized poly(DMAm‐co‐NIPAM) by RAFT with tunable LCSTs</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Oyeneye, Olabode O. ; Xu, William Z. ; Charpentier, Paul A.</creator><creatorcontrib>Oyeneye, Olabode O. ; Xu, William Z. ; Charpentier, Paul A.</creatorcontrib><description>ABSTRACT Providing catechol‐end functionality to controlled structure lower critical solution temperature (LCST) copolymers is attractive, given the versatility of catechol chemistry for tethering to nanostructures. Controlled polymer chain lengths with catechol RAFT end groups are of interest to provide tunable LCST behavior to nanoparticles, although these polymerizations are relatively unexplored. Herein, the reactivity ratios for the RAFT copolymerization of N,N‐dimethylacrylamide (DMAm) and N‐isopropylacrylamide (NIPAM) pairs based on catechol‐end RAFT agents using an in situ NMR technique were first determined. Several catechol‐end poly(DMAm‐co‐NIPAM) samples were then prepared using the RAFT agent to provide copolymer. The reactivity ratios for the DMAm‐NIPAM pair were rDMAm = 1.28–1.31 and rNIPAM = 0.48–0.51. All the poly(DMAm‐co‐NIPAM) samples were found to have Mn values ≤ 26 kDa and Ð &lt; 1.08 with LCST values ranging from 31 to 92°C, while maintaining a short range of glass transition temperature (Tg = 118–137°C). The difference in LCST values for the catechol functionalized poly(DMAm‐co‐NIPAM) based on 0.5 wt% aqueous buffered solutions at pH 5.5 and 8.5 was found to be &lt;3.0°C. These conditions are suitable for subsequent catechol‐induced coordination and nucleophilic addition chemistry for covalent and noncovalent linkages during subsequent post‐modification. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017, 55, 4062–4070 A series of low dispersity catechol‐end functionalized thermoresponsive copolymers (dimethylacrylamide and n‐isopropylacrylamide pairs) were designed based on RAFT chemistry to possess varying lower critical solution temperature (LCST) values. The copolymers exhibited excellent thermoresponsive behaviors which are reasonably stable in conditions necessary for the postpolymerization modifications of the catechol and trithiocarbonate functionalities.</description><identifier>ISSN: 0887-624X</identifier><identifier>EISSN: 1099-0518</identifier><identifier>DOI: 10.1002/pola.28879</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Buffers (chemistry) ; Catechol ; Copolymerization ; Glass transition temperature ; Isopropylacrylamide ; kinetics ; Linkages ; lower critical solution temperature ; NMR ; Nuclear magnetic resonance ; RAFT ; Tethering</subject><ispartof>Journal of polymer science. Part A, Polymer chemistry, 2017-12, Vol.55 (24), p.4062-4070</ispartof><rights>2017 Wiley Periodicals, Inc.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3389-f9b15ca250d79a0ba3b8942b5dadcf2e4c7df305cf8904b727f4d5f74513b0473</citedby><cites>FETCH-LOGICAL-c3389-f9b15ca250d79a0ba3b8942b5dadcf2e4c7df305cf8904b727f4d5f74513b0473</cites><orcidid>0000-0001-9506-5576</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpola.28879$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpola.28879$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Oyeneye, Olabode O.</creatorcontrib><creatorcontrib>Xu, William Z.</creatorcontrib><creatorcontrib>Charpentier, Paul A.</creatorcontrib><title>Designing catechol‐end functionalized poly(DMAm‐co‐NIPAM) by RAFT with tunable LCSTs</title><title>Journal of polymer science. Part A, Polymer chemistry</title><description>ABSTRACT Providing catechol‐end functionality to controlled structure lower critical solution temperature (LCST) copolymers is attractive, given the versatility of catechol chemistry for tethering to nanostructures. Controlled polymer chain lengths with catechol RAFT end groups are of interest to provide tunable LCST behavior to nanoparticles, although these polymerizations are relatively unexplored. Herein, the reactivity ratios for the RAFT copolymerization of N,N‐dimethylacrylamide (DMAm) and N‐isopropylacrylamide (NIPAM) pairs based on catechol‐end RAFT agents using an in situ NMR technique were first determined. Several catechol‐end poly(DMAm‐co‐NIPAM) samples were then prepared using the RAFT agent to provide copolymer. The reactivity ratios for the DMAm‐NIPAM pair were rDMAm = 1.28–1.31 and rNIPAM = 0.48–0.51. All the poly(DMAm‐co‐NIPAM) samples were found to have Mn values ≤ 26 kDa and Ð &lt; 1.08 with LCST values ranging from 31 to 92°C, while maintaining a short range of glass transition temperature (Tg = 118–137°C). The difference in LCST values for the catechol functionalized poly(DMAm‐co‐NIPAM) based on 0.5 wt% aqueous buffered solutions at pH 5.5 and 8.5 was found to be &lt;3.0°C. These conditions are suitable for subsequent catechol‐induced coordination and nucleophilic addition chemistry for covalent and noncovalent linkages during subsequent post‐modification. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017, 55, 4062–4070 A series of low dispersity catechol‐end functionalized thermoresponsive copolymers (dimethylacrylamide and n‐isopropylacrylamide pairs) were designed based on RAFT chemistry to possess varying lower critical solution temperature (LCST) values. The copolymers exhibited excellent thermoresponsive behaviors which are reasonably stable in conditions necessary for the postpolymerization modifications of the catechol and trithiocarbonate functionalities.</description><subject>Buffers (chemistry)</subject><subject>Catechol</subject><subject>Copolymerization</subject><subject>Glass transition temperature</subject><subject>Isopropylacrylamide</subject><subject>kinetics</subject><subject>Linkages</subject><subject>lower critical solution temperature</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>RAFT</subject><subject>Tethering</subject><issn>0887-624X</issn><issn>1099-0518</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kNFKwzAUhoMoOKc3PkHAGxU6kzZZm8uyOR10bugE8SYkabJ11HY2LaNe-Qg-o09iZr325hw4_3d-zvkBOMdogBHyb7ZlLgZ-FIXsAPQwYsxDFEeHoIfczBv65OUYnFi7QchpNOqB17G22arIihVUotZqXebfn1-6SKFpClVnZSHy7EOn0Dm3l-NZ_OZkVbryMF3EsysoW_gYT5Zwl9VrWDeFkLmGyehpaU_BkRG51Wd_vQ-eJ7fL0b2XzO-mozjxVBBEzDNMYqqET1EaMoGkCGTEiC9pKlJlfE1UmJoAUWUihogM_dCQlJqQUBxIRMKgDy46321Vvjfa1nxTNpW723LsfiRkSPCeuu4oVZXWVtrwbZW9iarlGPF9dnyfHf_NzsG4g3dZrtt_SL6YJ3G38wOJXnOL</recordid><startdate>20171215</startdate><enddate>20171215</enddate><creator>Oyeneye, Olabode O.</creator><creator>Xu, William Z.</creator><creator>Charpentier, Paul A.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0001-9506-5576</orcidid></search><sort><creationdate>20171215</creationdate><title>Designing catechol‐end functionalized poly(DMAm‐co‐NIPAM) by RAFT with tunable LCSTs</title><author>Oyeneye, Olabode O. ; Xu, William Z. ; Charpentier, Paul A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3389-f9b15ca250d79a0ba3b8942b5dadcf2e4c7df305cf8904b727f4d5f74513b0473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Buffers (chemistry)</topic><topic>Catechol</topic><topic>Copolymerization</topic><topic>Glass transition temperature</topic><topic>Isopropylacrylamide</topic><topic>kinetics</topic><topic>Linkages</topic><topic>lower critical solution temperature</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>RAFT</topic><topic>Tethering</topic><toplevel>online_resources</toplevel><creatorcontrib>Oyeneye, Olabode O.</creatorcontrib><creatorcontrib>Xu, William Z.</creatorcontrib><creatorcontrib>Charpentier, Paul A.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of polymer science. Part A, Polymer chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oyeneye, Olabode O.</au><au>Xu, William Z.</au><au>Charpentier, Paul A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Designing catechol‐end functionalized poly(DMAm‐co‐NIPAM) by RAFT with tunable LCSTs</atitle><jtitle>Journal of polymer science. Part A, Polymer chemistry</jtitle><date>2017-12-15</date><risdate>2017</risdate><volume>55</volume><issue>24</issue><spage>4062</spage><epage>4070</epage><pages>4062-4070</pages><issn>0887-624X</issn><eissn>1099-0518</eissn><abstract>ABSTRACT Providing catechol‐end functionality to controlled structure lower critical solution temperature (LCST) copolymers is attractive, given the versatility of catechol chemistry for tethering to nanostructures. Controlled polymer chain lengths with catechol RAFT end groups are of interest to provide tunable LCST behavior to nanoparticles, although these polymerizations are relatively unexplored. Herein, the reactivity ratios for the RAFT copolymerization of N,N‐dimethylacrylamide (DMAm) and N‐isopropylacrylamide (NIPAM) pairs based on catechol‐end RAFT agents using an in situ NMR technique were first determined. Several catechol‐end poly(DMAm‐co‐NIPAM) samples were then prepared using the RAFT agent to provide copolymer. The reactivity ratios for the DMAm‐NIPAM pair were rDMAm = 1.28–1.31 and rNIPAM = 0.48–0.51. All the poly(DMAm‐co‐NIPAM) samples were found to have Mn values ≤ 26 kDa and Ð &lt; 1.08 with LCST values ranging from 31 to 92°C, while maintaining a short range of glass transition temperature (Tg = 118–137°C). The difference in LCST values for the catechol functionalized poly(DMAm‐co‐NIPAM) based on 0.5 wt% aqueous buffered solutions at pH 5.5 and 8.5 was found to be &lt;3.0°C. These conditions are suitable for subsequent catechol‐induced coordination and nucleophilic addition chemistry for covalent and noncovalent linkages during subsequent post‐modification. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017, 55, 4062–4070 A series of low dispersity catechol‐end functionalized thermoresponsive copolymers (dimethylacrylamide and n‐isopropylacrylamide pairs) were designed based on RAFT chemistry to possess varying lower critical solution temperature (LCST) values. The copolymers exhibited excellent thermoresponsive behaviors which are reasonably stable in conditions necessary for the postpolymerization modifications of the catechol and trithiocarbonate functionalities.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/pola.28879</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-9506-5576</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0887-624X
ispartof Journal of polymer science. Part A, Polymer chemistry, 2017-12, Vol.55 (24), p.4062-4070
issn 0887-624X
1099-0518
language eng
recordid cdi_proquest_journals_1958446417
source Wiley Online Library Journals Frontfile Complete
subjects Buffers (chemistry)
Catechol
Copolymerization
Glass transition temperature
Isopropylacrylamide
kinetics
Linkages
lower critical solution temperature
NMR
Nuclear magnetic resonance
RAFT
Tethering
title Designing catechol‐end functionalized poly(DMAm‐co‐NIPAM) by RAFT with tunable LCSTs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T17%3A43%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Designing%20catechol%E2%80%90end%20functionalized%20poly(DMAm%E2%80%90co%E2%80%90NIPAM)%20by%20RAFT%20with%20tunable%20LCSTs&rft.jtitle=Journal%20of%20polymer%20science.%20Part%20A,%20Polymer%20chemistry&rft.au=Oyeneye,%20Olabode%20O.&rft.date=2017-12-15&rft.volume=55&rft.issue=24&rft.spage=4062&rft.epage=4070&rft.pages=4062-4070&rft.issn=0887-624X&rft.eissn=1099-0518&rft_id=info:doi/10.1002/pola.28879&rft_dat=%3Cproquest_cross%3E1958446417%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1958446417&rft_id=info:pmid/&rfr_iscdi=true