Groove-induced changes of discharge in channel flows

The changes in discharge in pressure-driven flows through channels with longitudinal grooves have been investigated in the laminar flow regime and in the turbulent flow regime with moderate Reynolds numbers ( $Re_{2H}\approx 6000$ ) using both analytical and numerical methodologies. The results demo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2016-07, Vol.799, p.297-333
Hauptverfasser: Chen, Yu, Floryan, J. M., Chew, Y. T., Khoo, B. C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 333
container_issue
container_start_page 297
container_title Journal of fluid mechanics
container_volume 799
creator Chen, Yu
Floryan, J. M.
Chew, Y. T.
Khoo, B. C.
description The changes in discharge in pressure-driven flows through channels with longitudinal grooves have been investigated in the laminar flow regime and in the turbulent flow regime with moderate Reynolds numbers ( $Re_{2H}\approx 6000$ ) using both analytical and numerical methodologies. The results demonstrate that the long-wavelength grooves can increase discharge by 20 %–150 %, depending on the groove amplitude and the type of flow, while the short-wavelength grooves reduce the discharge. It has been shown that the reduced geometry model applies to the analysis of turbulent flows and the performance of grooves of arbitrary form is well approximated by the performance of grooves whose shape is represented by the dominant Fourier mode. The flow patterns, the turbulent kinetic energy as well as the Reynolds stresses were examined to identify the mechanisms leading to an increase in discharge. It is shown that the increase in discharge results from the rearrangement of the bulk fluid movement and not from the suppression of turbulence intensity. The turbulent kinetic energy and the Reynolds stresses are rearranged while their volume-averaged intensities remain the same as in the smooth channel. Analysis of the interaction of the groove patterns on both walls demonstrates that the converging–diverging configuration results in the greatest increase in discharge while the wavy channel configuration results in a reduction in discharge.
doi_str_mv 10.1017/jfm.2016.388
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1958337107</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2016_388</cupid><sourcerecordid>1958337107</sourcerecordid><originalsourceid>FETCH-LOGICAL-c302t-6602b77dd8708d90e517666ec3ad334cd5ca03b9229273d89ca3845cde423c623</originalsourceid><addsrcrecordid>eNptkD1PwzAQhi0EEqWw8QMisZJw9iX-GFEFBakSC8yWYzshURsXuwHx70lpBwam052e9z3pIeSaQkGBiru-2RQMKC9QyhMyoyVXueBldUpmAIzllDI4Jxcp9QAUQYkZKZcxhE-fd4MbrXeZfTdD61MWmsx1adpi67Nu-L0Pfp016_CVLslZY9bJXx3nnLw9PrwunvLVy_J5cb_KLQLb5ZwDq4VwTgqQToGvqOCce4vGIZbWVdYA1ooxxQQ6qaxBWVbW-ZKh5Qzn5ObQu43hY_Rpp_swxmF6qamqJKKgICbq9kDZGFKKvtHb2G1M_NYU9N6LnrzovRc9eZnw4oibTR071_o_rf8FfgDg2mMe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1958337107</pqid></control><display><type>article</type><title>Groove-induced changes of discharge in channel flows</title><source>Cambridge University Press Journals Complete</source><creator>Chen, Yu ; Floryan, J. M. ; Chew, Y. T. ; Khoo, B. C.</creator><creatorcontrib>Chen, Yu ; Floryan, J. M. ; Chew, Y. T. ; Khoo, B. C.</creatorcontrib><description>The changes in discharge in pressure-driven flows through channels with longitudinal grooves have been investigated in the laminar flow regime and in the turbulent flow regime with moderate Reynolds numbers ( $Re_{2H}\approx 6000$ ) using both analytical and numerical methodologies. The results demonstrate that the long-wavelength grooves can increase discharge by 20 %–150 %, depending on the groove amplitude and the type of flow, while the short-wavelength grooves reduce the discharge. It has been shown that the reduced geometry model applies to the analysis of turbulent flows and the performance of grooves of arbitrary form is well approximated by the performance of grooves whose shape is represented by the dominant Fourier mode. The flow patterns, the turbulent kinetic energy as well as the Reynolds stresses were examined to identify the mechanisms leading to an increase in discharge. It is shown that the increase in discharge results from the rearrangement of the bulk fluid movement and not from the suppression of turbulence intensity. The turbulent kinetic energy and the Reynolds stresses are rearranged while their volume-averaged intensities remain the same as in the smooth channel. Analysis of the interaction of the groove patterns on both walls demonstrates that the converging–diverging configuration results in the greatest increase in discharge while the wavy channel configuration results in a reduction in discharge.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2016.388</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Channel flow ; Computational fluid dynamics ; Configurations ; Discharge ; Flow pattern ; Fluid flow ; Fluids ; Grooves ; Hydrophobic surfaces ; Kinetic energy ; Laminar flow ; Mathematical models ; Reynolds stresses ; Stresses ; Trucks ; Turbulence ; Turbulence intensity ; Turbulent flow ; Wavelength</subject><ispartof>Journal of fluid mechanics, 2016-07, Vol.799, p.297-333</ispartof><rights>2016 Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c302t-6602b77dd8708d90e517666ec3ad334cd5ca03b9229273d89ca3845cde423c623</citedby><cites>FETCH-LOGICAL-c302t-6602b77dd8708d90e517666ec3ad334cd5ca03b9229273d89ca3845cde423c623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112016003888/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27923,27924,55627</link.rule.ids></links><search><creatorcontrib>Chen, Yu</creatorcontrib><creatorcontrib>Floryan, J. M.</creatorcontrib><creatorcontrib>Chew, Y. T.</creatorcontrib><creatorcontrib>Khoo, B. C.</creatorcontrib><title>Groove-induced changes of discharge in channel flows</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>The changes in discharge in pressure-driven flows through channels with longitudinal grooves have been investigated in the laminar flow regime and in the turbulent flow regime with moderate Reynolds numbers ( $Re_{2H}\approx 6000$ ) using both analytical and numerical methodologies. The results demonstrate that the long-wavelength grooves can increase discharge by 20 %–150 %, depending on the groove amplitude and the type of flow, while the short-wavelength grooves reduce the discharge. It has been shown that the reduced geometry model applies to the analysis of turbulent flows and the performance of grooves of arbitrary form is well approximated by the performance of grooves whose shape is represented by the dominant Fourier mode. The flow patterns, the turbulent kinetic energy as well as the Reynolds stresses were examined to identify the mechanisms leading to an increase in discharge. It is shown that the increase in discharge results from the rearrangement of the bulk fluid movement and not from the suppression of turbulence intensity. The turbulent kinetic energy and the Reynolds stresses are rearranged while their volume-averaged intensities remain the same as in the smooth channel. Analysis of the interaction of the groove patterns on both walls demonstrates that the converging–diverging configuration results in the greatest increase in discharge while the wavy channel configuration results in a reduction in discharge.</description><subject>Channel flow</subject><subject>Computational fluid dynamics</subject><subject>Configurations</subject><subject>Discharge</subject><subject>Flow pattern</subject><subject>Fluid flow</subject><subject>Fluids</subject><subject>Grooves</subject><subject>Hydrophobic surfaces</subject><subject>Kinetic energy</subject><subject>Laminar flow</subject><subject>Mathematical models</subject><subject>Reynolds stresses</subject><subject>Stresses</subject><subject>Trucks</subject><subject>Turbulence</subject><subject>Turbulence intensity</subject><subject>Turbulent flow</subject><subject>Wavelength</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkD1PwzAQhi0EEqWw8QMisZJw9iX-GFEFBakSC8yWYzshURsXuwHx70lpBwam052e9z3pIeSaQkGBiru-2RQMKC9QyhMyoyVXueBldUpmAIzllDI4Jxcp9QAUQYkZKZcxhE-fd4MbrXeZfTdD61MWmsx1adpi67Nu-L0Pfp016_CVLslZY9bJXx3nnLw9PrwunvLVy_J5cb_KLQLb5ZwDq4VwTgqQToGvqOCce4vGIZbWVdYA1ooxxQQ6qaxBWVbW-ZKh5Qzn5ObQu43hY_Rpp_swxmF6qamqJKKgICbq9kDZGFKKvtHb2G1M_NYU9N6LnrzovRc9eZnw4oibTR071_o_rf8FfgDg2mMe</recordid><startdate>20160725</startdate><enddate>20160725</enddate><creator>Chen, Yu</creator><creator>Floryan, J. M.</creator><creator>Chew, Y. T.</creator><creator>Khoo, B. C.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20160725</creationdate><title>Groove-induced changes of discharge in channel flows</title><author>Chen, Yu ; Floryan, J. M. ; Chew, Y. T. ; Khoo, B. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c302t-6602b77dd8708d90e517666ec3ad334cd5ca03b9229273d89ca3845cde423c623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Channel flow</topic><topic>Computational fluid dynamics</topic><topic>Configurations</topic><topic>Discharge</topic><topic>Flow pattern</topic><topic>Fluid flow</topic><topic>Fluids</topic><topic>Grooves</topic><topic>Hydrophobic surfaces</topic><topic>Kinetic energy</topic><topic>Laminar flow</topic><topic>Mathematical models</topic><topic>Reynolds stresses</topic><topic>Stresses</topic><topic>Trucks</topic><topic>Turbulence</topic><topic>Turbulence intensity</topic><topic>Turbulent flow</topic><topic>Wavelength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Yu</creatorcontrib><creatorcontrib>Floryan, J. M.</creatorcontrib><creatorcontrib>Chew, Y. T.</creatorcontrib><creatorcontrib>Khoo, B. C.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Yu</au><au>Floryan, J. M.</au><au>Chew, Y. T.</au><au>Khoo, B. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Groove-induced changes of discharge in channel flows</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2016-07-25</date><risdate>2016</risdate><volume>799</volume><spage>297</spage><epage>333</epage><pages>297-333</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>The changes in discharge in pressure-driven flows through channels with longitudinal grooves have been investigated in the laminar flow regime and in the turbulent flow regime with moderate Reynolds numbers ( $Re_{2H}\approx 6000$ ) using both analytical and numerical methodologies. The results demonstrate that the long-wavelength grooves can increase discharge by 20 %–150 %, depending on the groove amplitude and the type of flow, while the short-wavelength grooves reduce the discharge. It has been shown that the reduced geometry model applies to the analysis of turbulent flows and the performance of grooves of arbitrary form is well approximated by the performance of grooves whose shape is represented by the dominant Fourier mode. The flow patterns, the turbulent kinetic energy as well as the Reynolds stresses were examined to identify the mechanisms leading to an increase in discharge. It is shown that the increase in discharge results from the rearrangement of the bulk fluid movement and not from the suppression of turbulence intensity. The turbulent kinetic energy and the Reynolds stresses are rearranged while their volume-averaged intensities remain the same as in the smooth channel. Analysis of the interaction of the groove patterns on both walls demonstrates that the converging–diverging configuration results in the greatest increase in discharge while the wavy channel configuration results in a reduction in discharge.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2016.388</doi><tpages>37</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2016-07, Vol.799, p.297-333
issn 0022-1120
1469-7645
language eng
recordid cdi_proquest_journals_1958337107
source Cambridge University Press Journals Complete
subjects Channel flow
Computational fluid dynamics
Configurations
Discharge
Flow pattern
Fluid flow
Fluids
Grooves
Hydrophobic surfaces
Kinetic energy
Laminar flow
Mathematical models
Reynolds stresses
Stresses
Trucks
Turbulence
Turbulence intensity
Turbulent flow
Wavelength
title Groove-induced changes of discharge in channel flows
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T09%3A34%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Groove-induced%20changes%20of%20discharge%20in%20channel%20flows&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Chen,%20Yu&rft.date=2016-07-25&rft.volume=799&rft.spage=297&rft.epage=333&rft.pages=297-333&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2016.388&rft_dat=%3Cproquest_cross%3E1958337107%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1958337107&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2016_388&rfr_iscdi=true