A shock model for the maintenance problem of a repairable system

In this paper, a shock model for the maintenance problem of a repairable system is studied. Assume that shocks will arrive according to a Poisson process. If the interarrival time of two successive shocks is less than a threshold, then the system will fail. For a deteriorating system, we assume that...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & operations research 2004-09, Vol.31 (11), p.1807-1820
Hauptverfasser: Lam, Yeh, Zhang, Yuan Lin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1820
container_issue 11
container_start_page 1807
container_title Computers & operations research
container_volume 31
creator Lam, Yeh
Zhang, Yuan Lin
description In this paper, a shock model for the maintenance problem of a repairable system is studied. Assume that shocks will arrive according to a Poisson process. If the interarrival time of two successive shocks is less than a threshold, then the system will fail. For a deteriorating system, we assume that the successive threshold values are geometrically nondecreasing after repair, and the consecutive repair times after failure form an increasing geometric process. For an improving system, we assume that the successive threshold values are geometrically decreasing after repair, and the consecutive repair times after failure form a decreasing geometric process. A replacement policy N is adopted by which we shall replace the system by an identical new one at the time following the Nth failure. Then for each of the deteriorating system and improving system, an optimal policy N ∗ for minimizing the long-run average cost per unit time is determined explicitly.
doi_str_mv 10.1016/S0305-0548(03)00121-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_195829391</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0305054803001217</els_id><sourcerecordid>666952741</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-71a5e6e1c324762a5abf7692f4f8a4936acb0ae40ad9ab1b87c880502485717c3</originalsourceid><addsrcrecordid>eNqFkE9LAzEQxYMoWKsfQQie9LA62Ww22ZOW4j8oeFDBW8hmJ3Rrd1OTrdBvb9qKV-cyMLw3M-9HyDmDawasvHkFDiIDUahL4FcALGeZPCAjpiTPZCk-DsnoT3JMTmJcQCqZsxG5m9A49_aTdr7BJXU-0GGOtDNtP2Bveot0FXy9xI56Rw0NuDJtMGlA4yYO2J2SI2eWEc9--5i8P9y_TZ-y2cvj83Qyy2wBMGSSGYElMsvzQpa5EaZ2sqxyVzhlioqXxtZgsADTVKZmtZJWKRCQF0pIJi0fk4v93vTO1xrjoBd-Hfp0UrNKqLziFUsisRfZ4GMM6PQqtJ0JG81Ab1npHSu9BaGB6x0rLZPvdu_DlOC7xaCjbTGFb9qAdtCNb__Z8APjo29E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195829391</pqid></control><display><type>article</type><title>A shock model for the maintenance problem of a repairable system</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Lam, Yeh ; Zhang, Yuan Lin</creator><creatorcontrib>Lam, Yeh ; Zhang, Yuan Lin</creatorcontrib><description>In this paper, a shock model for the maintenance problem of a repairable system is studied. Assume that shocks will arrive according to a Poisson process. If the interarrival time of two successive shocks is less than a threshold, then the system will fail. For a deteriorating system, we assume that the successive threshold values are geometrically nondecreasing after repair, and the consecutive repair times after failure form an increasing geometric process. For an improving system, we assume that the successive threshold values are geometrically decreasing after repair, and the consecutive repair times after failure form a decreasing geometric process. A replacement policy N is adopted by which we shall replace the system by an identical new one at the time following the Nth failure. Then for each of the deteriorating system and improving system, an optimal policy N ∗ for minimizing the long-run average cost per unit time is determined explicitly.</description><identifier>ISSN: 0305-0548</identifier><identifier>EISSN: 1873-765X</identifier><identifier>EISSN: 0305-0548</identifier><identifier>DOI: 10.1016/S0305-0548(03)00121-7</identifier><identifier>CODEN: CMORAP</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Geometric process ; Information systems ; Poisson distribution ; Poisson process ; Repair &amp; maintenance ; Shock</subject><ispartof>Computers &amp; operations research, 2004-09, Vol.31 (11), p.1807-1820</ispartof><rights>2003 Elsevier Ltd</rights><rights>Copyright Pergamon Press Inc. Sep 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-71a5e6e1c324762a5abf7692f4f8a4936acb0ae40ad9ab1b87c880502485717c3</citedby><cites>FETCH-LOGICAL-c400t-71a5e6e1c324762a5abf7692f4f8a4936acb0ae40ad9ab1b87c880502485717c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0305-0548(03)00121-7$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Lam, Yeh</creatorcontrib><creatorcontrib>Zhang, Yuan Lin</creatorcontrib><title>A shock model for the maintenance problem of a repairable system</title><title>Computers &amp; operations research</title><description>In this paper, a shock model for the maintenance problem of a repairable system is studied. Assume that shocks will arrive according to a Poisson process. If the interarrival time of two successive shocks is less than a threshold, then the system will fail. For a deteriorating system, we assume that the successive threshold values are geometrically nondecreasing after repair, and the consecutive repair times after failure form an increasing geometric process. For an improving system, we assume that the successive threshold values are geometrically decreasing after repair, and the consecutive repair times after failure form a decreasing geometric process. A replacement policy N is adopted by which we shall replace the system by an identical new one at the time following the Nth failure. Then for each of the deteriorating system and improving system, an optimal policy N ∗ for minimizing the long-run average cost per unit time is determined explicitly.</description><subject>Geometric process</subject><subject>Information systems</subject><subject>Poisson distribution</subject><subject>Poisson process</subject><subject>Repair &amp; maintenance</subject><subject>Shock</subject><issn>0305-0548</issn><issn>1873-765X</issn><issn>0305-0548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqFkE9LAzEQxYMoWKsfQQie9LA62Ww22ZOW4j8oeFDBW8hmJ3Rrd1OTrdBvb9qKV-cyMLw3M-9HyDmDawasvHkFDiIDUahL4FcALGeZPCAjpiTPZCk-DsnoT3JMTmJcQCqZsxG5m9A49_aTdr7BJXU-0GGOtDNtP2Bveot0FXy9xI56Rw0NuDJtMGlA4yYO2J2SI2eWEc9--5i8P9y_TZ-y2cvj83Qyy2wBMGSSGYElMsvzQpa5EaZ2sqxyVzhlioqXxtZgsADTVKZmtZJWKRCQF0pIJi0fk4v93vTO1xrjoBd-Hfp0UrNKqLziFUsisRfZ4GMM6PQqtJ0JG81Ab1npHSu9BaGB6x0rLZPvdu_DlOC7xaCjbTGFb9qAdtCNb__Z8APjo29E</recordid><startdate>20040901</startdate><enddate>20040901</enddate><creator>Lam, Yeh</creator><creator>Zhang, Yuan Lin</creator><general>Elsevier Ltd</general><general>Pergamon Press Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20040901</creationdate><title>A shock model for the maintenance problem of a repairable system</title><author>Lam, Yeh ; Zhang, Yuan Lin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-71a5e6e1c324762a5abf7692f4f8a4936acb0ae40ad9ab1b87c880502485717c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Geometric process</topic><topic>Information systems</topic><topic>Poisson distribution</topic><topic>Poisson process</topic><topic>Repair &amp; maintenance</topic><topic>Shock</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lam, Yeh</creatorcontrib><creatorcontrib>Zhang, Yuan Lin</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; operations research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lam, Yeh</au><au>Zhang, Yuan Lin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A shock model for the maintenance problem of a repairable system</atitle><jtitle>Computers &amp; operations research</jtitle><date>2004-09-01</date><risdate>2004</risdate><volume>31</volume><issue>11</issue><spage>1807</spage><epage>1820</epage><pages>1807-1820</pages><issn>0305-0548</issn><eissn>1873-765X</eissn><eissn>0305-0548</eissn><coden>CMORAP</coden><abstract>In this paper, a shock model for the maintenance problem of a repairable system is studied. Assume that shocks will arrive according to a Poisson process. If the interarrival time of two successive shocks is less than a threshold, then the system will fail. For a deteriorating system, we assume that the successive threshold values are geometrically nondecreasing after repair, and the consecutive repair times after failure form an increasing geometric process. For an improving system, we assume that the successive threshold values are geometrically decreasing after repair, and the consecutive repair times after failure form a decreasing geometric process. A replacement policy N is adopted by which we shall replace the system by an identical new one at the time following the Nth failure. Then for each of the deteriorating system and improving system, an optimal policy N ∗ for minimizing the long-run average cost per unit time is determined explicitly.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/S0305-0548(03)00121-7</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0305-0548
ispartof Computers & operations research, 2004-09, Vol.31 (11), p.1807-1820
issn 0305-0548
1873-765X
0305-0548
language eng
recordid cdi_proquest_journals_195829391
source Elsevier ScienceDirect Journals Complete
subjects Geometric process
Information systems
Poisson distribution
Poisson process
Repair & maintenance
Shock
title A shock model for the maintenance problem of a repairable system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T06%3A05%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20shock%20model%20for%20the%20maintenance%20problem%20of%20a%20repairable%20system&rft.jtitle=Computers%20&%20operations%20research&rft.au=Lam,%20Yeh&rft.date=2004-09-01&rft.volume=31&rft.issue=11&rft.spage=1807&rft.epage=1820&rft.pages=1807-1820&rft.issn=0305-0548&rft.eissn=1873-765X&rft.coden=CMORAP&rft_id=info:doi/10.1016/S0305-0548(03)00121-7&rft_dat=%3Cproquest_cross%3E666952741%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=195829391&rft_id=info:pmid/&rft_els_id=S0305054803001217&rfr_iscdi=true