A shock model for the maintenance problem of a repairable system
In this paper, a shock model for the maintenance problem of a repairable system is studied. Assume that shocks will arrive according to a Poisson process. If the interarrival time of two successive shocks is less than a threshold, then the system will fail. For a deteriorating system, we assume that...
Gespeichert in:
Veröffentlicht in: | Computers & operations research 2004-09, Vol.31 (11), p.1807-1820 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1820 |
---|---|
container_issue | 11 |
container_start_page | 1807 |
container_title | Computers & operations research |
container_volume | 31 |
creator | Lam, Yeh Zhang, Yuan Lin |
description | In this paper, a shock model for the maintenance problem of a repairable system is studied. Assume that shocks will arrive according to a Poisson process. If the interarrival time of two successive shocks is less than a threshold, then the system will fail. For a deteriorating system, we assume that the successive threshold values are geometrically nondecreasing after repair, and the consecutive repair times after failure form an increasing geometric process. For an improving system, we assume that the successive threshold values are geometrically decreasing after repair, and the consecutive repair times after failure form a decreasing geometric process. A replacement policy N is adopted by which we shall replace the system by an identical new one at the time following the Nth failure. Then for each of the deteriorating system and improving system, an optimal policy
N
∗
for minimizing the long-run average cost per unit time is determined explicitly. |
doi_str_mv | 10.1016/S0305-0548(03)00121-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_195829391</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0305054803001217</els_id><sourcerecordid>666952741</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-71a5e6e1c324762a5abf7692f4f8a4936acb0ae40ad9ab1b87c880502485717c3</originalsourceid><addsrcrecordid>eNqFkE9LAzEQxYMoWKsfQQie9LA62Ww22ZOW4j8oeFDBW8hmJ3Rrd1OTrdBvb9qKV-cyMLw3M-9HyDmDawasvHkFDiIDUahL4FcALGeZPCAjpiTPZCk-DsnoT3JMTmJcQCqZsxG5m9A49_aTdr7BJXU-0GGOtDNtP2Bveot0FXy9xI56Rw0NuDJtMGlA4yYO2J2SI2eWEc9--5i8P9y_TZ-y2cvj83Qyy2wBMGSSGYElMsvzQpa5EaZ2sqxyVzhlioqXxtZgsADTVKZmtZJWKRCQF0pIJi0fk4v93vTO1xrjoBd-Hfp0UrNKqLziFUsisRfZ4GMM6PQqtJ0JG81Ab1npHSu9BaGB6x0rLZPvdu_DlOC7xaCjbTGFb9qAdtCNb__Z8APjo29E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195829391</pqid></control><display><type>article</type><title>A shock model for the maintenance problem of a repairable system</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Lam, Yeh ; Zhang, Yuan Lin</creator><creatorcontrib>Lam, Yeh ; Zhang, Yuan Lin</creatorcontrib><description>In this paper, a shock model for the maintenance problem of a repairable system is studied. Assume that shocks will arrive according to a Poisson process. If the interarrival time of two successive shocks is less than a threshold, then the system will fail. For a deteriorating system, we assume that the successive threshold values are geometrically nondecreasing after repair, and the consecutive repair times after failure form an increasing geometric process. For an improving system, we assume that the successive threshold values are geometrically decreasing after repair, and the consecutive repair times after failure form a decreasing geometric process. A replacement policy N is adopted by which we shall replace the system by an identical new one at the time following the Nth failure. Then for each of the deteriorating system and improving system, an optimal policy
N
∗
for minimizing the long-run average cost per unit time is determined explicitly.</description><identifier>ISSN: 0305-0548</identifier><identifier>EISSN: 1873-765X</identifier><identifier>EISSN: 0305-0548</identifier><identifier>DOI: 10.1016/S0305-0548(03)00121-7</identifier><identifier>CODEN: CMORAP</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Geometric process ; Information systems ; Poisson distribution ; Poisson process ; Repair & maintenance ; Shock</subject><ispartof>Computers & operations research, 2004-09, Vol.31 (11), p.1807-1820</ispartof><rights>2003 Elsevier Ltd</rights><rights>Copyright Pergamon Press Inc. Sep 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-71a5e6e1c324762a5abf7692f4f8a4936acb0ae40ad9ab1b87c880502485717c3</citedby><cites>FETCH-LOGICAL-c400t-71a5e6e1c324762a5abf7692f4f8a4936acb0ae40ad9ab1b87c880502485717c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0305-0548(03)00121-7$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Lam, Yeh</creatorcontrib><creatorcontrib>Zhang, Yuan Lin</creatorcontrib><title>A shock model for the maintenance problem of a repairable system</title><title>Computers & operations research</title><description>In this paper, a shock model for the maintenance problem of a repairable system is studied. Assume that shocks will arrive according to a Poisson process. If the interarrival time of two successive shocks is less than a threshold, then the system will fail. For a deteriorating system, we assume that the successive threshold values are geometrically nondecreasing after repair, and the consecutive repair times after failure form an increasing geometric process. For an improving system, we assume that the successive threshold values are geometrically decreasing after repair, and the consecutive repair times after failure form a decreasing geometric process. A replacement policy N is adopted by which we shall replace the system by an identical new one at the time following the Nth failure. Then for each of the deteriorating system and improving system, an optimal policy
N
∗
for minimizing the long-run average cost per unit time is determined explicitly.</description><subject>Geometric process</subject><subject>Information systems</subject><subject>Poisson distribution</subject><subject>Poisson process</subject><subject>Repair & maintenance</subject><subject>Shock</subject><issn>0305-0548</issn><issn>1873-765X</issn><issn>0305-0548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqFkE9LAzEQxYMoWKsfQQie9LA62Ww22ZOW4j8oeFDBW8hmJ3Rrd1OTrdBvb9qKV-cyMLw3M-9HyDmDawasvHkFDiIDUahL4FcALGeZPCAjpiTPZCk-DsnoT3JMTmJcQCqZsxG5m9A49_aTdr7BJXU-0GGOtDNtP2Bveot0FXy9xI56Rw0NuDJtMGlA4yYO2J2SI2eWEc9--5i8P9y_TZ-y2cvj83Qyy2wBMGSSGYElMsvzQpa5EaZ2sqxyVzhlioqXxtZgsADTVKZmtZJWKRCQF0pIJi0fk4v93vTO1xrjoBd-Hfp0UrNKqLziFUsisRfZ4GMM6PQqtJ0JG81Ab1npHSu9BaGB6x0rLZPvdu_DlOC7xaCjbTGFb9qAdtCNb__Z8APjo29E</recordid><startdate>20040901</startdate><enddate>20040901</enddate><creator>Lam, Yeh</creator><creator>Zhang, Yuan Lin</creator><general>Elsevier Ltd</general><general>Pergamon Press Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20040901</creationdate><title>A shock model for the maintenance problem of a repairable system</title><author>Lam, Yeh ; Zhang, Yuan Lin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-71a5e6e1c324762a5abf7692f4f8a4936acb0ae40ad9ab1b87c880502485717c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Geometric process</topic><topic>Information systems</topic><topic>Poisson distribution</topic><topic>Poisson process</topic><topic>Repair & maintenance</topic><topic>Shock</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lam, Yeh</creatorcontrib><creatorcontrib>Zhang, Yuan Lin</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers & operations research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lam, Yeh</au><au>Zhang, Yuan Lin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A shock model for the maintenance problem of a repairable system</atitle><jtitle>Computers & operations research</jtitle><date>2004-09-01</date><risdate>2004</risdate><volume>31</volume><issue>11</issue><spage>1807</spage><epage>1820</epage><pages>1807-1820</pages><issn>0305-0548</issn><eissn>1873-765X</eissn><eissn>0305-0548</eissn><coden>CMORAP</coden><abstract>In this paper, a shock model for the maintenance problem of a repairable system is studied. Assume that shocks will arrive according to a Poisson process. If the interarrival time of two successive shocks is less than a threshold, then the system will fail. For a deteriorating system, we assume that the successive threshold values are geometrically nondecreasing after repair, and the consecutive repair times after failure form an increasing geometric process. For an improving system, we assume that the successive threshold values are geometrically decreasing after repair, and the consecutive repair times after failure form a decreasing geometric process. A replacement policy N is adopted by which we shall replace the system by an identical new one at the time following the Nth failure. Then for each of the deteriorating system and improving system, an optimal policy
N
∗
for minimizing the long-run average cost per unit time is determined explicitly.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/S0305-0548(03)00121-7</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0305-0548 |
ispartof | Computers & operations research, 2004-09, Vol.31 (11), p.1807-1820 |
issn | 0305-0548 1873-765X 0305-0548 |
language | eng |
recordid | cdi_proquest_journals_195829391 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Geometric process Information systems Poisson distribution Poisson process Repair & maintenance Shock |
title | A shock model for the maintenance problem of a repairable system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T06%3A05%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20shock%20model%20for%20the%20maintenance%20problem%20of%20a%20repairable%20system&rft.jtitle=Computers%20&%20operations%20research&rft.au=Lam,%20Yeh&rft.date=2004-09-01&rft.volume=31&rft.issue=11&rft.spage=1807&rft.epage=1820&rft.pages=1807-1820&rft.issn=0305-0548&rft.eissn=1873-765X&rft.coden=CMORAP&rft_id=info:doi/10.1016/S0305-0548(03)00121-7&rft_dat=%3Cproquest_cross%3E666952741%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=195829391&rft_id=info:pmid/&rft_els_id=S0305054803001217&rfr_iscdi=true |