On the determination of solutions of simultaneous Pell equations x 2 - ( a 2 - 1 ) y 2 = y 2 - p z 2 = 1

In this paper, we consider the simultaneous Pell equations x 2 - ( a 2 - 1 ) y 2 = 1 , y 2 - p z 2 = 1 , where p is prime and a > 1 . Assuming the solutions of the Pell equation x 2 - ( a 2 - 1 ) y 2 = 1 are x = x m and y = y m with m ≥ 2 , we prove that the system (0.1) has solutions only when m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Periodica mathematica Hungarica 2017-01, Vol.75 (2), p.336-344
Hauptverfasser: Keskin, Refik, Karaatlı, Olcay, Şiar, Zafer, Öğüt, Ümmügülsüm
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 344
container_issue 2
container_start_page 336
container_title Periodica mathematica Hungarica
container_volume 75
creator Keskin, Refik
Karaatlı, Olcay
Şiar, Zafer
Öğüt, Ümmügülsüm
description In this paper, we consider the simultaneous Pell equations x 2 - ( a 2 - 1 ) y 2 = 1 , y 2 - p z 2 = 1 , where p is prime and a > 1 . Assuming the solutions of the Pell equation x 2 - ( a 2 - 1 ) y 2 = 1 are x = x m and y = y m with m ≥ 2 , we prove that the system (0.1) has solutions only when m = 2 or m = 3 . In the case of m = 3 , we show that p = 2 and give the solutions of (0.1) in terms of Pell and Pell–Lucas sequences. When m = 2 and p ≡ 3 ( mod 4 ) , we determine the values of a, x, y, and z. Lastly, we show that (0.1) has no solutions when p ≡ 1 ( mod 4 ) .
doi_str_mv 10.1007/s10998-017-0203-2
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_1958290019</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1958290019</sourcerecordid><originalsourceid>FETCH-proquest_journals_19582900193</originalsourceid><addsrcrecordid>eNqNTr2KAjEYDIfCrec9wHUf2GiR8_sSFjeFlSh2WtgvASOuxEQ3Cdz59MbVB7CZH2YGhrEfwl9CnE0DoVIVR5pxFCi5-GAFlVXFRSVUjxWIkngpUX6yQQgnxLySWLDjxkE8GtibaNpz43RsvAN_gOBteujQmeacbNTO-BRga6wFc036Gf-BAA5j0B0TTOA_q3mHHC5w6xwNWf-gbTDfL_5io9Vyt1jzS-uvyYRYn3xqXY5qUmU-nS8q-V7rDuqtSCM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1958290019</pqid></control><display><type>article</type><title>On the determination of solutions of simultaneous Pell equations x 2 - ( a 2 - 1 ) y 2 = y 2 - p z 2 = 1</title><source>Springer Nature - Complete Springer Journals</source><creator>Keskin, Refik ; Karaatlı, Olcay ; Şiar, Zafer ; Öğüt, Ümmügülsüm</creator><creatorcontrib>Keskin, Refik ; Karaatlı, Olcay ; Şiar, Zafer ; Öğüt, Ümmügülsüm</creatorcontrib><description>In this paper, we consider the simultaneous Pell equations x 2 - ( a 2 - 1 ) y 2 = 1 , y 2 - p z 2 = 1 , where p is prime and a &gt; 1 . Assuming the solutions of the Pell equation x 2 - ( a 2 - 1 ) y 2 = 1 are x = x m and y = y m with m ≥ 2 , we prove that the system (0.1) has solutions only when m = 2 or m = 3 . In the case of m = 3 , we show that p = 2 and give the solutions of (0.1) in terms of Pell and Pell–Lucas sequences. When m = 2 and p ≡ 3 ( mod 4 ) , we determine the values of a, x, y, and z. Lastly, we show that (0.1) has no solutions when p ≡ 1 ( mod 4 ) .</description><identifier>ISSN: 0031-5303</identifier><identifier>EISSN: 1588-2829</identifier><identifier>DOI: 10.1007/s10998-017-0203-2</identifier><language>eng</language><publisher>Heidelberg: Springer Nature B.V</publisher><subject>Mathematical analysis</subject><ispartof>Periodica mathematica Hungarica, 2017-01, Vol.75 (2), p.336-344</ispartof><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Keskin, Refik</creatorcontrib><creatorcontrib>Karaatlı, Olcay</creatorcontrib><creatorcontrib>Şiar, Zafer</creatorcontrib><creatorcontrib>Öğüt, Ümmügülsüm</creatorcontrib><title>On the determination of solutions of simultaneous Pell equations x 2 - ( a 2 - 1 ) y 2 = y 2 - p z 2 = 1</title><title>Periodica mathematica Hungarica</title><description>In this paper, we consider the simultaneous Pell equations x 2 - ( a 2 - 1 ) y 2 = 1 , y 2 - p z 2 = 1 , where p is prime and a &gt; 1 . Assuming the solutions of the Pell equation x 2 - ( a 2 - 1 ) y 2 = 1 are x = x m and y = y m with m ≥ 2 , we prove that the system (0.1) has solutions only when m = 2 or m = 3 . In the case of m = 3 , we show that p = 2 and give the solutions of (0.1) in terms of Pell and Pell–Lucas sequences. When m = 2 and p ≡ 3 ( mod 4 ) , we determine the values of a, x, y, and z. Lastly, we show that (0.1) has no solutions when p ≡ 1 ( mod 4 ) .</description><subject>Mathematical analysis</subject><issn>0031-5303</issn><issn>1588-2829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqNTr2KAjEYDIfCrec9wHUf2GiR8_sSFjeFlSh2WtgvASOuxEQ3Cdz59MbVB7CZH2YGhrEfwl9CnE0DoVIVR5pxFCi5-GAFlVXFRSVUjxWIkngpUX6yQQgnxLySWLDjxkE8GtibaNpz43RsvAN_gOBteujQmeacbNTO-BRga6wFc036Gf-BAA5j0B0TTOA_q3mHHC5w6xwNWf-gbTDfL_5io9Vyt1jzS-uvyYRYn3xqXY5qUmU-nS8q-V7rDuqtSCM</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Keskin, Refik</creator><creator>Karaatlı, Olcay</creator><creator>Şiar, Zafer</creator><creator>Öğüt, Ümmügülsüm</creator><general>Springer Nature B.V</general><scope/></search><sort><creationdate>20170101</creationdate><title>On the determination of solutions of simultaneous Pell equations x 2 - ( a 2 - 1 ) y 2 = y 2 - p z 2 = 1</title><author>Keskin, Refik ; Karaatlı, Olcay ; Şiar, Zafer ; Öğüt, Ümmügülsüm</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_19582900193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Mathematical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Keskin, Refik</creatorcontrib><creatorcontrib>Karaatlı, Olcay</creatorcontrib><creatorcontrib>Şiar, Zafer</creatorcontrib><creatorcontrib>Öğüt, Ümmügülsüm</creatorcontrib><jtitle>Periodica mathematica Hungarica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Keskin, Refik</au><au>Karaatlı, Olcay</au><au>Şiar, Zafer</au><au>Öğüt, Ümmügülsüm</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the determination of solutions of simultaneous Pell equations x 2 - ( a 2 - 1 ) y 2 = y 2 - p z 2 = 1</atitle><jtitle>Periodica mathematica Hungarica</jtitle><date>2017-01-01</date><risdate>2017</risdate><volume>75</volume><issue>2</issue><spage>336</spage><epage>344</epage><pages>336-344</pages><issn>0031-5303</issn><eissn>1588-2829</eissn><abstract>In this paper, we consider the simultaneous Pell equations x 2 - ( a 2 - 1 ) y 2 = 1 , y 2 - p z 2 = 1 , where p is prime and a &gt; 1 . Assuming the solutions of the Pell equation x 2 - ( a 2 - 1 ) y 2 = 1 are x = x m and y = y m with m ≥ 2 , we prove that the system (0.1) has solutions only when m = 2 or m = 3 . In the case of m = 3 , we show that p = 2 and give the solutions of (0.1) in terms of Pell and Pell–Lucas sequences. When m = 2 and p ≡ 3 ( mod 4 ) , we determine the values of a, x, y, and z. Lastly, we show that (0.1) has no solutions when p ≡ 1 ( mod 4 ) .</abstract><cop>Heidelberg</cop><pub>Springer Nature B.V</pub><doi>10.1007/s10998-017-0203-2</doi></addata></record>
fulltext fulltext
identifier ISSN: 0031-5303
ispartof Periodica mathematica Hungarica, 2017-01, Vol.75 (2), p.336-344
issn 0031-5303
1588-2829
language eng
recordid cdi_proquest_journals_1958290019
source Springer Nature - Complete Springer Journals
subjects Mathematical analysis
title On the determination of solutions of simultaneous Pell equations x 2 - ( a 2 - 1 ) y 2 = y 2 - p z 2 = 1
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T20%3A36%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20determination%20of%20solutions%20of%20simultaneous%20Pell%20equations%20x%202%20-%20(%20a%202%20-%201%20)%20y%202%20=%20y%202%20-%20p%20z%202%20=%201&rft.jtitle=Periodica%20mathematica%20Hungarica&rft.au=Keskin,%20Refik&rft.date=2017-01-01&rft.volume=75&rft.issue=2&rft.spage=336&rft.epage=344&rft.pages=336-344&rft.issn=0031-5303&rft.eissn=1588-2829&rft_id=info:doi/10.1007/s10998-017-0203-2&rft_dat=%3Cproquest%3E1958290019%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1958290019&rft_id=info:pmid/&rfr_iscdi=true