Effect of elevated CO 2 on organic matter pools and fluxes in a summer Baltic Sea plankton community

Ocean acidification is expected to influence plankton community structure and biogeochemical element cycles. To date, the response of plankton communities to elevated CO2 has been studied primarily during nutrient-stimulated blooms. In this CO2 manipulation study, we used large-volume (~ 55 m3) pela...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biogeosciences 2015-10, Vol.12 (20), p.6181-6203
Hauptverfasser: Paul, A. J., Bach, L. T., Schulz, K.-G., Boxhammer, T., Czerny, J., Achterberg, E. P., Hellemann, D., Trense, Y., Nausch, M., Sswat, M., Riebesell, U.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6203
container_issue 20
container_start_page 6181
container_title Biogeosciences
container_volume 12
creator Paul, A. J.
Bach, L. T.
Schulz, K.-G.
Boxhammer, T.
Czerny, J.
Achterberg, E. P.
Hellemann, D.
Trense, Y.
Nausch, M.
Sswat, M.
Riebesell, U.
description Ocean acidification is expected to influence plankton community structure and biogeochemical element cycles. To date, the response of plankton communities to elevated CO2 has been studied primarily during nutrient-stimulated blooms. In this CO2 manipulation study, we used large-volume (~ 55 m3) pelagic in situ mesocosms to enclose a natural summer, post-spring-bloom plankton assemblage in the Baltic Sea to investigate the response of organic matter pools to ocean acidification. The carbonate system in the six mesocosms was manipulated to yield average fCO2 ranging between 365 and ~ 1230 μatm with no adjustment of naturally available nutrient concentrations. Plankton community development and key biogeochemical element pools were subsequently followed in this nitrogen-limited ecosystem over a period of 7 weeks. We observed higher sustained chlorophyll a and particulate matter concentrations (~ 25 % higher) and lower inorganic phosphate concentrations in the water column in the highest fCO2 treatment (1231 μatm) during the final 2 weeks of the study period (Phase III), when there was low net change in particulate and dissolved matter pools. Size-fractionated phytoplankton pigment analyses indicated that these differences were driven by picophytoplankton (< 2 μm) and were already established early in the experiment during an initial warm and more productive period with overall elevated chlorophyll a and particulate matter concentrations. However, the influence of picophytoplankton on bulk organic matter pools was masked by high biomass of larger plankton until Phase III, when the contribution of the small size fraction (< 2 μm) increased to up to 90 % of chlorophyll a. In this phase, a CO2-driven increase in water column particulate carbon did not lead to enhanced sinking material flux but was instead reflected in increased dissolved organic carbon concentrations. Hence ocean acidification may induce changes in organic matter partitioning in the upper water column during the low-nitrogen summer period in the Baltic Sea.
doi_str_mv 10.5194/bg-12-6181-2015
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1958269798</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1958269798</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1148-886c92de8df46aedfc5aee7910649ef0c95ecfd5b8ccb126c9c365bf8b3de88a3</originalsourceid><addsrcrecordid>eNpNkD1PwzAQhi0EEqUws1piDvU5cWqPUJUPqVIHYLYc51ylJHGwHUT_PanKwHSvdM97Jz2E3AK7F6CKRbXLgGclSMg4A3FGZrDkZVaAVOf_8iW5inHPWC6ZFDNSr51Dm6h3FFv8NglrutpSTn1PfdiZvrG0MylhoIP3baSmr6lrxx-MtOmpoXHsumn5aNo0oW9o6NCa_jNNfeu7buybdLgmF860EW_-5px8PK3fVy_ZZvv8unrYZBagkJmUpVW8Rlm7ojRYOysM4lIBKwuFjlkl0LpaVNLaCvgE27wUlZNVPpWkyefk7nR3CP5rxJj03o-hn15qUELyUi2VnKjFibLBxxjQ6SE0nQkHDUwfVepqp4Hro0p9VJn_ApfbZ9w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1958269798</pqid></control><display><type>article</type><title>Effect of elevated CO 2 on organic matter pools and fluxes in a summer Baltic Sea plankton community</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Paul, A. J. ; Bach, L. T. ; Schulz, K.-G. ; Boxhammer, T. ; Czerny, J. ; Achterberg, E. P. ; Hellemann, D. ; Trense, Y. ; Nausch, M. ; Sswat, M. ; Riebesell, U.</creator><creatorcontrib>Paul, A. J. ; Bach, L. T. ; Schulz, K.-G. ; Boxhammer, T. ; Czerny, J. ; Achterberg, E. P. ; Hellemann, D. ; Trense, Y. ; Nausch, M. ; Sswat, M. ; Riebesell, U.</creatorcontrib><description>Ocean acidification is expected to influence plankton community structure and biogeochemical element cycles. To date, the response of plankton communities to elevated CO2 has been studied primarily during nutrient-stimulated blooms. In this CO2 manipulation study, we used large-volume (~ 55 m3) pelagic in situ mesocosms to enclose a natural summer, post-spring-bloom plankton assemblage in the Baltic Sea to investigate the response of organic matter pools to ocean acidification. The carbonate system in the six mesocosms was manipulated to yield average fCO2 ranging between 365 and ~ 1230 μatm with no adjustment of naturally available nutrient concentrations. Plankton community development and key biogeochemical element pools were subsequently followed in this nitrogen-limited ecosystem over a period of 7 weeks. We observed higher sustained chlorophyll a and particulate matter concentrations (~ 25 % higher) and lower inorganic phosphate concentrations in the water column in the highest fCO2 treatment (1231 μatm) during the final 2 weeks of the study period (Phase III), when there was low net change in particulate and dissolved matter pools. Size-fractionated phytoplankton pigment analyses indicated that these differences were driven by picophytoplankton (&lt; 2 μm) and were already established early in the experiment during an initial warm and more productive period with overall elevated chlorophyll a and particulate matter concentrations. However, the influence of picophytoplankton on bulk organic matter pools was masked by high biomass of larger plankton until Phase III, when the contribution of the small size fraction (&lt; 2 μm) increased to up to 90 % of chlorophyll a. In this phase, a CO2-driven increase in water column particulate carbon did not lead to enhanced sinking material flux but was instead reflected in increased dissolved organic carbon concentrations. Hence ocean acidification may induce changes in organic matter partitioning in the upper water column during the low-nitrogen summer period in the Baltic Sea.</description><identifier>ISSN: 1726-4189</identifier><identifier>ISSN: 1726-4170</identifier><identifier>EISSN: 1726-4189</identifier><identifier>DOI: 10.5194/bg-12-6181-2015</identifier><language>eng</language><publisher>Katlenburg-Lindau: Copernicus GmbH</publisher><subject>Acidification ; Biogeochemical cycles ; Biogeochemistry ; Blooms ; Carbon dioxide ; Carbonates ; Chlorophyll ; Chlorophyll a ; Columns (structural) ; Community development ; Community structure ; Dissolved organic carbon ; Fluxes ; Mesocosms ; Mineral nutrients ; Nitrogen ; Nutrient availability ; Nutrient concentrations ; Ocean acidification ; Oceans ; Organic carbon ; Organic matter ; Particulate emissions ; Particulate matter ; Phosphates ; Phytoplankton ; Plankton ; Summer ; Suspended particulate matter ; Water column</subject><ispartof>Biogeosciences, 2015-10, Vol.12 (20), p.6181-6203</ispartof><rights>Copyright Copernicus GmbH 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1148-886c92de8df46aedfc5aee7910649ef0c95ecfd5b8ccb126c9c365bf8b3de88a3</citedby><cites>FETCH-LOGICAL-c1148-886c92de8df46aedfc5aee7910649ef0c95ecfd5b8ccb126c9c365bf8b3de88a3</cites><orcidid>0000-0002-9442-452X ; 0000-0003-1037-5239 ; 0000-0002-8481-4639 ; 0000-0002-9632-5947 ; 0000-0003-0202-3671</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids></links><search><creatorcontrib>Paul, A. J.</creatorcontrib><creatorcontrib>Bach, L. T.</creatorcontrib><creatorcontrib>Schulz, K.-G.</creatorcontrib><creatorcontrib>Boxhammer, T.</creatorcontrib><creatorcontrib>Czerny, J.</creatorcontrib><creatorcontrib>Achterberg, E. P.</creatorcontrib><creatorcontrib>Hellemann, D.</creatorcontrib><creatorcontrib>Trense, Y.</creatorcontrib><creatorcontrib>Nausch, M.</creatorcontrib><creatorcontrib>Sswat, M.</creatorcontrib><creatorcontrib>Riebesell, U.</creatorcontrib><title>Effect of elevated CO 2 on organic matter pools and fluxes in a summer Baltic Sea plankton community</title><title>Biogeosciences</title><description>Ocean acidification is expected to influence plankton community structure and biogeochemical element cycles. To date, the response of plankton communities to elevated CO2 has been studied primarily during nutrient-stimulated blooms. In this CO2 manipulation study, we used large-volume (~ 55 m3) pelagic in situ mesocosms to enclose a natural summer, post-spring-bloom plankton assemblage in the Baltic Sea to investigate the response of organic matter pools to ocean acidification. The carbonate system in the six mesocosms was manipulated to yield average fCO2 ranging between 365 and ~ 1230 μatm with no adjustment of naturally available nutrient concentrations. Plankton community development and key biogeochemical element pools were subsequently followed in this nitrogen-limited ecosystem over a period of 7 weeks. We observed higher sustained chlorophyll a and particulate matter concentrations (~ 25 % higher) and lower inorganic phosphate concentrations in the water column in the highest fCO2 treatment (1231 μatm) during the final 2 weeks of the study period (Phase III), when there was low net change in particulate and dissolved matter pools. Size-fractionated phytoplankton pigment analyses indicated that these differences were driven by picophytoplankton (&lt; 2 μm) and were already established early in the experiment during an initial warm and more productive period with overall elevated chlorophyll a and particulate matter concentrations. However, the influence of picophytoplankton on bulk organic matter pools was masked by high biomass of larger plankton until Phase III, when the contribution of the small size fraction (&lt; 2 μm) increased to up to 90 % of chlorophyll a. In this phase, a CO2-driven increase in water column particulate carbon did not lead to enhanced sinking material flux but was instead reflected in increased dissolved organic carbon concentrations. Hence ocean acidification may induce changes in organic matter partitioning in the upper water column during the low-nitrogen summer period in the Baltic Sea.</description><subject>Acidification</subject><subject>Biogeochemical cycles</subject><subject>Biogeochemistry</subject><subject>Blooms</subject><subject>Carbon dioxide</subject><subject>Carbonates</subject><subject>Chlorophyll</subject><subject>Chlorophyll a</subject><subject>Columns (structural)</subject><subject>Community development</subject><subject>Community structure</subject><subject>Dissolved organic carbon</subject><subject>Fluxes</subject><subject>Mesocosms</subject><subject>Mineral nutrients</subject><subject>Nitrogen</subject><subject>Nutrient availability</subject><subject>Nutrient concentrations</subject><subject>Ocean acidification</subject><subject>Oceans</subject><subject>Organic carbon</subject><subject>Organic matter</subject><subject>Particulate emissions</subject><subject>Particulate matter</subject><subject>Phosphates</subject><subject>Phytoplankton</subject><subject>Plankton</subject><subject>Summer</subject><subject>Suspended particulate matter</subject><subject>Water column</subject><issn>1726-4189</issn><issn>1726-4170</issn><issn>1726-4189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpNkD1PwzAQhi0EEqUws1piDvU5cWqPUJUPqVIHYLYc51ylJHGwHUT_PanKwHSvdM97Jz2E3AK7F6CKRbXLgGclSMg4A3FGZrDkZVaAVOf_8iW5inHPWC6ZFDNSr51Dm6h3FFv8NglrutpSTn1PfdiZvrG0MylhoIP3baSmr6lrxx-MtOmpoXHsumn5aNo0oW9o6NCa_jNNfeu7buybdLgmF860EW_-5px8PK3fVy_ZZvv8unrYZBagkJmUpVW8Rlm7ojRYOysM4lIBKwuFjlkl0LpaVNLaCvgE27wUlZNVPpWkyefk7nR3CP5rxJj03o-hn15qUELyUi2VnKjFibLBxxjQ6SE0nQkHDUwfVepqp4Hro0p9VJn_ApfbZ9w</recordid><startdate>20151028</startdate><enddate>20151028</enddate><creator>Paul, A. J.</creator><creator>Bach, L. T.</creator><creator>Schulz, K.-G.</creator><creator>Boxhammer, T.</creator><creator>Czerny, J.</creator><creator>Achterberg, E. P.</creator><creator>Hellemann, D.</creator><creator>Trense, Y.</creator><creator>Nausch, M.</creator><creator>Sswat, M.</creator><creator>Riebesell, U.</creator><general>Copernicus GmbH</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SN</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H95</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L6V</scope><scope>LK8</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><orcidid>https://orcid.org/0000-0002-9442-452X</orcidid><orcidid>https://orcid.org/0000-0003-1037-5239</orcidid><orcidid>https://orcid.org/0000-0002-8481-4639</orcidid><orcidid>https://orcid.org/0000-0002-9632-5947</orcidid><orcidid>https://orcid.org/0000-0003-0202-3671</orcidid></search><sort><creationdate>20151028</creationdate><title>Effect of elevated CO 2 on organic matter pools and fluxes in a summer Baltic Sea plankton community</title><author>Paul, A. J. ; Bach, L. T. ; Schulz, K.-G. ; Boxhammer, T. ; Czerny, J. ; Achterberg, E. P. ; Hellemann, D. ; Trense, Y. ; Nausch, M. ; Sswat, M. ; Riebesell, U.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1148-886c92de8df46aedfc5aee7910649ef0c95ecfd5b8ccb126c9c365bf8b3de88a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Acidification</topic><topic>Biogeochemical cycles</topic><topic>Biogeochemistry</topic><topic>Blooms</topic><topic>Carbon dioxide</topic><topic>Carbonates</topic><topic>Chlorophyll</topic><topic>Chlorophyll a</topic><topic>Columns (structural)</topic><topic>Community development</topic><topic>Community structure</topic><topic>Dissolved organic carbon</topic><topic>Fluxes</topic><topic>Mesocosms</topic><topic>Mineral nutrients</topic><topic>Nitrogen</topic><topic>Nutrient availability</topic><topic>Nutrient concentrations</topic><topic>Ocean acidification</topic><topic>Oceans</topic><topic>Organic carbon</topic><topic>Organic matter</topic><topic>Particulate emissions</topic><topic>Particulate matter</topic><topic>Phosphates</topic><topic>Phytoplankton</topic><topic>Plankton</topic><topic>Summer</topic><topic>Suspended particulate matter</topic><topic>Water column</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paul, A. J.</creatorcontrib><creatorcontrib>Bach, L. T.</creatorcontrib><creatorcontrib>Schulz, K.-G.</creatorcontrib><creatorcontrib>Boxhammer, T.</creatorcontrib><creatorcontrib>Czerny, J.</creatorcontrib><creatorcontrib>Achterberg, E. P.</creatorcontrib><creatorcontrib>Hellemann, D.</creatorcontrib><creatorcontrib>Trense, Y.</creatorcontrib><creatorcontrib>Nausch, M.</creatorcontrib><creatorcontrib>Sswat, M.</creatorcontrib><creatorcontrib>Riebesell, U.</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><jtitle>Biogeosciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paul, A. J.</au><au>Bach, L. T.</au><au>Schulz, K.-G.</au><au>Boxhammer, T.</au><au>Czerny, J.</au><au>Achterberg, E. P.</au><au>Hellemann, D.</au><au>Trense, Y.</au><au>Nausch, M.</au><au>Sswat, M.</au><au>Riebesell, U.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of elevated CO 2 on organic matter pools and fluxes in a summer Baltic Sea plankton community</atitle><jtitle>Biogeosciences</jtitle><date>2015-10-28</date><risdate>2015</risdate><volume>12</volume><issue>20</issue><spage>6181</spage><epage>6203</epage><pages>6181-6203</pages><issn>1726-4189</issn><issn>1726-4170</issn><eissn>1726-4189</eissn><abstract>Ocean acidification is expected to influence plankton community structure and biogeochemical element cycles. To date, the response of plankton communities to elevated CO2 has been studied primarily during nutrient-stimulated blooms. In this CO2 manipulation study, we used large-volume (~ 55 m3) pelagic in situ mesocosms to enclose a natural summer, post-spring-bloom plankton assemblage in the Baltic Sea to investigate the response of organic matter pools to ocean acidification. The carbonate system in the six mesocosms was manipulated to yield average fCO2 ranging between 365 and ~ 1230 μatm with no adjustment of naturally available nutrient concentrations. Plankton community development and key biogeochemical element pools were subsequently followed in this nitrogen-limited ecosystem over a period of 7 weeks. We observed higher sustained chlorophyll a and particulate matter concentrations (~ 25 % higher) and lower inorganic phosphate concentrations in the water column in the highest fCO2 treatment (1231 μatm) during the final 2 weeks of the study period (Phase III), when there was low net change in particulate and dissolved matter pools. Size-fractionated phytoplankton pigment analyses indicated that these differences were driven by picophytoplankton (&lt; 2 μm) and were already established early in the experiment during an initial warm and more productive period with overall elevated chlorophyll a and particulate matter concentrations. However, the influence of picophytoplankton on bulk organic matter pools was masked by high biomass of larger plankton until Phase III, when the contribution of the small size fraction (&lt; 2 μm) increased to up to 90 % of chlorophyll a. In this phase, a CO2-driven increase in water column particulate carbon did not lead to enhanced sinking material flux but was instead reflected in increased dissolved organic carbon concentrations. Hence ocean acidification may induce changes in organic matter partitioning in the upper water column during the low-nitrogen summer period in the Baltic Sea.</abstract><cop>Katlenburg-Lindau</cop><pub>Copernicus GmbH</pub><doi>10.5194/bg-12-6181-2015</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0002-9442-452X</orcidid><orcidid>https://orcid.org/0000-0003-1037-5239</orcidid><orcidid>https://orcid.org/0000-0002-8481-4639</orcidid><orcidid>https://orcid.org/0000-0002-9632-5947</orcidid><orcidid>https://orcid.org/0000-0003-0202-3671</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1726-4189
ispartof Biogeosciences, 2015-10, Vol.12 (20), p.6181-6203
issn 1726-4189
1726-4170
1726-4189
language eng
recordid cdi_proquest_journals_1958269798
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Acidification
Biogeochemical cycles
Biogeochemistry
Blooms
Carbon dioxide
Carbonates
Chlorophyll
Chlorophyll a
Columns (structural)
Community development
Community structure
Dissolved organic carbon
Fluxes
Mesocosms
Mineral nutrients
Nitrogen
Nutrient availability
Nutrient concentrations
Ocean acidification
Oceans
Organic carbon
Organic matter
Particulate emissions
Particulate matter
Phosphates
Phytoplankton
Plankton
Summer
Suspended particulate matter
Water column
title Effect of elevated CO 2 on organic matter pools and fluxes in a summer Baltic Sea plankton community
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T00%3A49%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20elevated%20CO%202%20on%20organic%20matter%20pools%20and%20fluxes%20in%20a%20summer%20Baltic%20Sea%20plankton%20community&rft.jtitle=Biogeosciences&rft.au=Paul,%20A.%20J.&rft.date=2015-10-28&rft.volume=12&rft.issue=20&rft.spage=6181&rft.epage=6203&rft.pages=6181-6203&rft.issn=1726-4189&rft.eissn=1726-4189&rft_id=info:doi/10.5194/bg-12-6181-2015&rft_dat=%3Cproquest_cross%3E1958269798%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1958269798&rft_id=info:pmid/&rfr_iscdi=true