The impact of seasonalities on direct radiative effects and radiative heating rates of absorbing aerosols above clouds
The impact of seasonalities on direct radiative effects (DREs) and radiative heating rates (RHRs) of absorbing aerosols above clouds in the southeast Atlantic is examined using radiative transfer calculations. For an aerosol optical thickness of 0.6 located between 0 and 4 km, a cloud optical thickn...
Gespeichert in:
Veröffentlicht in: | Quarterly journal of the Royal Meteorological Society 2017-04, Vol.143 (704), p.1395-1405 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1405 |
---|---|
container_issue | 704 |
container_start_page | 1395 |
container_title | Quarterly journal of the Royal Meteorological Society |
container_volume | 143 |
creator | Chang, Ian Christopher, Sundar A. |
description | The impact of seasonalities on direct radiative effects (DREs) and radiative heating rates (RHRs) of absorbing aerosols above clouds in the southeast Atlantic is examined using radiative transfer calculations. For an aerosol optical thickness of 0.6 located between 0 and 4 km, a cloud optical thickness of 9.0 and a cloud effective radius of 12.8 µm at 0.55 µm located between 1 and 2 km, the diurnally averaged RHR at noon in the aerosol layer increases from ∼6.6 K day−1 in June to ∼8.9 K day−1 in October. In June (October), the RHR in the cloud layer at noon is 1.3 (1.7) K day−1 higher than the case of pristine clouds. However, an elevated aerosol layer (2–4 km) reduces the RHR by ∼0.2 K day−1 in the cloud layer relative to a pristine cloudy case. The DRE at top‐of‐atmosphere (TOA) reaches its peak when the solar zenith angle (SZA) is 54°. The DRE increases (decreases) with SZA for SZA less (greater) than 54°. The primary peak DRE is ∼29.5 W m−2 at 5.0°S 5.0°E, occurring at 0800 UTC. At noon, the DRE at TOA is ∼18.9, ∼20.5 and ∼23.1 W m−2 at 5.0°S, 15.0°S and 25.0°S along 5.0°E, respectively. This study provides data and theoretical understanding to help positioning science flights that target measurements of above‐cloud aerosol radiative effects. |
doi_str_mv | 10.1002/qj.3012 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1957825311</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1957825311</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2892-f0a26eefabb735ad6a68aa60e71000d9a95f74f16d5edafe365c99abead042c43</originalsourceid><addsrcrecordid>eNp1kM1Lw0AQxRdRsFbxXwh48CCps5uPbY5S_KQgQgVvyyQ7axPSbLubVvrfu7EevHh68Ob3hpnH2CWHCQcQt5tmkgAXR2zEUynjqYSPYzYCSLK4AChO2Zn3DQBkUsgR2y2WFNWrNVZ9ZE3kCb3tsK37mnxku0jXjsLIoa6xr3cUkTHB8BF2-o-7pKDdZ3D6IWciLL115WAhOettGxKlDWTV2q325-zEYOvp4lfH7P3hfjF7iuevj8-zu3lciWkhYgMociKDZSmTDHWO-RQxB5LhVdAFFpmRqeG5zkijoSTPqqLAklBDKqo0GbOrw961s5st-V41duvCg17xIpNTkSWcB-r6QFXhVO_IqLWrV-j2ioMaSlWbRg2lBvLmQH7VLe3_w9Tbyw_9Deksecg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1957825311</pqid></control><display><type>article</type><title>The impact of seasonalities on direct radiative effects and radiative heating rates of absorbing aerosols above clouds</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Chang, Ian ; Christopher, Sundar A.</creator><creatorcontrib>Chang, Ian ; Christopher, Sundar A.</creatorcontrib><description>The impact of seasonalities on direct radiative effects (DREs) and radiative heating rates (RHRs) of absorbing aerosols above clouds in the southeast Atlantic is examined using radiative transfer calculations. For an aerosol optical thickness of 0.6 located between 0 and 4 km, a cloud optical thickness of 9.0 and a cloud effective radius of 12.8 µm at 0.55 µm located between 1 and 2 km, the diurnally averaged RHR at noon in the aerosol layer increases from ∼6.6 K day−1 in June to ∼8.9 K day−1 in October. In June (October), the RHR in the cloud layer at noon is 1.3 (1.7) K day−1 higher than the case of pristine clouds. However, an elevated aerosol layer (2–4 km) reduces the RHR by ∼0.2 K day−1 in the cloud layer relative to a pristine cloudy case. The DRE at top‐of‐atmosphere (TOA) reaches its peak when the solar zenith angle (SZA) is 54°. The DRE increases (decreases) with SZA for SZA less (greater) than 54°. The primary peak DRE is ∼29.5 W m−2 at 5.0°S 5.0°E, occurring at 0800 UTC. At noon, the DRE at TOA is ∼18.9, ∼20.5 and ∼23.1 W m−2 at 5.0°S, 15.0°S and 25.0°S along 5.0°E, respectively. This study provides data and theoretical understanding to help positioning science flights that target measurements of above‐cloud aerosol radiative effects.</description><identifier>ISSN: 0035-9009</identifier><identifier>EISSN: 1477-870X</identifier><identifier>DOI: 10.1002/qj.3012</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>aerosol absorption ; Aerosol effects ; Aerosols ; aerosol–cloud radiative effects ; biomass‐burning aerosols ; Clouds ; Diurnal ; energy budgets ; Heating ; liquid clouds ; Radiative heating ; radiative heating rates ; Radiative transfer ; Radiative transfer calculations ; Seasons ; Temperature</subject><ispartof>Quarterly journal of the Royal Meteorological Society, 2017-04, Vol.143 (704), p.1395-1405</ispartof><rights>2017 Royal Meteorological Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2892-f0a26eefabb735ad6a68aa60e71000d9a95f74f16d5edafe365c99abead042c43</citedby><cites>FETCH-LOGICAL-c2892-f0a26eefabb735ad6a68aa60e71000d9a95f74f16d5edafe365c99abead042c43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fqj.3012$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fqj.3012$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Chang, Ian</creatorcontrib><creatorcontrib>Christopher, Sundar A.</creatorcontrib><title>The impact of seasonalities on direct radiative effects and radiative heating rates of absorbing aerosols above clouds</title><title>Quarterly journal of the Royal Meteorological Society</title><description>The impact of seasonalities on direct radiative effects (DREs) and radiative heating rates (RHRs) of absorbing aerosols above clouds in the southeast Atlantic is examined using radiative transfer calculations. For an aerosol optical thickness of 0.6 located between 0 and 4 km, a cloud optical thickness of 9.0 and a cloud effective radius of 12.8 µm at 0.55 µm located between 1 and 2 km, the diurnally averaged RHR at noon in the aerosol layer increases from ∼6.6 K day−1 in June to ∼8.9 K day−1 in October. In June (October), the RHR in the cloud layer at noon is 1.3 (1.7) K day−1 higher than the case of pristine clouds. However, an elevated aerosol layer (2–4 km) reduces the RHR by ∼0.2 K day−1 in the cloud layer relative to a pristine cloudy case. The DRE at top‐of‐atmosphere (TOA) reaches its peak when the solar zenith angle (SZA) is 54°. The DRE increases (decreases) with SZA for SZA less (greater) than 54°. The primary peak DRE is ∼29.5 W m−2 at 5.0°S 5.0°E, occurring at 0800 UTC. At noon, the DRE at TOA is ∼18.9, ∼20.5 and ∼23.1 W m−2 at 5.0°S, 15.0°S and 25.0°S along 5.0°E, respectively. This study provides data and theoretical understanding to help positioning science flights that target measurements of above‐cloud aerosol radiative effects.</description><subject>aerosol absorption</subject><subject>Aerosol effects</subject><subject>Aerosols</subject><subject>aerosol–cloud radiative effects</subject><subject>biomass‐burning aerosols</subject><subject>Clouds</subject><subject>Diurnal</subject><subject>energy budgets</subject><subject>Heating</subject><subject>liquid clouds</subject><subject>Radiative heating</subject><subject>radiative heating rates</subject><subject>Radiative transfer</subject><subject>Radiative transfer calculations</subject><subject>Seasons</subject><subject>Temperature</subject><issn>0035-9009</issn><issn>1477-870X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kM1Lw0AQxRdRsFbxXwh48CCps5uPbY5S_KQgQgVvyyQ7axPSbLubVvrfu7EevHh68Ob3hpnH2CWHCQcQt5tmkgAXR2zEUynjqYSPYzYCSLK4AChO2Zn3DQBkUsgR2y2WFNWrNVZ9ZE3kCb3tsK37mnxku0jXjsLIoa6xr3cUkTHB8BF2-o-7pKDdZ3D6IWciLL115WAhOettGxKlDWTV2q325-zEYOvp4lfH7P3hfjF7iuevj8-zu3lciWkhYgMociKDZSmTDHWO-RQxB5LhVdAFFpmRqeG5zkijoSTPqqLAklBDKqo0GbOrw961s5st-V41duvCg17xIpNTkSWcB-r6QFXhVO_IqLWrV-j2ioMaSlWbRg2lBvLmQH7VLe3_w9Tbyw_9Deksecg</recordid><startdate>201704</startdate><enddate>201704</enddate><creator>Chang, Ian</creator><creator>Christopher, Sundar A.</creator><general>John Wiley & Sons, Ltd</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope></search><sort><creationdate>201704</creationdate><title>The impact of seasonalities on direct radiative effects and radiative heating rates of absorbing aerosols above clouds</title><author>Chang, Ian ; Christopher, Sundar A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2892-f0a26eefabb735ad6a68aa60e71000d9a95f74f16d5edafe365c99abead042c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>aerosol absorption</topic><topic>Aerosol effects</topic><topic>Aerosols</topic><topic>aerosol–cloud radiative effects</topic><topic>biomass‐burning aerosols</topic><topic>Clouds</topic><topic>Diurnal</topic><topic>energy budgets</topic><topic>Heating</topic><topic>liquid clouds</topic><topic>Radiative heating</topic><topic>radiative heating rates</topic><topic>Radiative transfer</topic><topic>Radiative transfer calculations</topic><topic>Seasons</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chang, Ian</creatorcontrib><creatorcontrib>Christopher, Sundar A.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Quarterly journal of the Royal Meteorological Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chang, Ian</au><au>Christopher, Sundar A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The impact of seasonalities on direct radiative effects and radiative heating rates of absorbing aerosols above clouds</atitle><jtitle>Quarterly journal of the Royal Meteorological Society</jtitle><date>2017-04</date><risdate>2017</risdate><volume>143</volume><issue>704</issue><spage>1395</spage><epage>1405</epage><pages>1395-1405</pages><issn>0035-9009</issn><eissn>1477-870X</eissn><abstract>The impact of seasonalities on direct radiative effects (DREs) and radiative heating rates (RHRs) of absorbing aerosols above clouds in the southeast Atlantic is examined using radiative transfer calculations. For an aerosol optical thickness of 0.6 located between 0 and 4 km, a cloud optical thickness of 9.0 and a cloud effective radius of 12.8 µm at 0.55 µm located between 1 and 2 km, the diurnally averaged RHR at noon in the aerosol layer increases from ∼6.6 K day−1 in June to ∼8.9 K day−1 in October. In June (October), the RHR in the cloud layer at noon is 1.3 (1.7) K day−1 higher than the case of pristine clouds. However, an elevated aerosol layer (2–4 km) reduces the RHR by ∼0.2 K day−1 in the cloud layer relative to a pristine cloudy case. The DRE at top‐of‐atmosphere (TOA) reaches its peak when the solar zenith angle (SZA) is 54°. The DRE increases (decreases) with SZA for SZA less (greater) than 54°. The primary peak DRE is ∼29.5 W m−2 at 5.0°S 5.0°E, occurring at 0800 UTC. At noon, the DRE at TOA is ∼18.9, ∼20.5 and ∼23.1 W m−2 at 5.0°S, 15.0°S and 25.0°S along 5.0°E, respectively. This study provides data and theoretical understanding to help positioning science flights that target measurements of above‐cloud aerosol radiative effects.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1002/qj.3012</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0035-9009 |
ispartof | Quarterly journal of the Royal Meteorological Society, 2017-04, Vol.143 (704), p.1395-1405 |
issn | 0035-9009 1477-870X |
language | eng |
recordid | cdi_proquest_journals_1957825311 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | aerosol absorption Aerosol effects Aerosols aerosol–cloud radiative effects biomass‐burning aerosols Clouds Diurnal energy budgets Heating liquid clouds Radiative heating radiative heating rates Radiative transfer Radiative transfer calculations Seasons Temperature |
title | The impact of seasonalities on direct radiative effects and radiative heating rates of absorbing aerosols above clouds |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T21%3A22%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20impact%20of%20seasonalities%20on%20direct%20radiative%20effects%20and%20radiative%20heating%20rates%20of%20absorbing%20aerosols%20above%20clouds&rft.jtitle=Quarterly%20journal%20of%20the%20Royal%20Meteorological%20Society&rft.au=Chang,%20Ian&rft.date=2017-04&rft.volume=143&rft.issue=704&rft.spage=1395&rft.epage=1405&rft.pages=1395-1405&rft.issn=0035-9009&rft.eissn=1477-870X&rft_id=info:doi/10.1002/qj.3012&rft_dat=%3Cproquest_cross%3E1957825311%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1957825311&rft_id=info:pmid/&rfr_iscdi=true |