The impact of seasonalities on direct radiative effects and radiative heating rates of absorbing aerosols above clouds

The impact of seasonalities on direct radiative effects (DREs) and radiative heating rates (RHRs) of absorbing aerosols above clouds in the southeast Atlantic is examined using radiative transfer calculations. For an aerosol optical thickness of 0.6 located between 0 and 4 km, a cloud optical thickn...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Quarterly journal of the Royal Meteorological Society 2017-04, Vol.143 (704), p.1395-1405
Hauptverfasser: Chang, Ian, Christopher, Sundar A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1405
container_issue 704
container_start_page 1395
container_title Quarterly journal of the Royal Meteorological Society
container_volume 143
creator Chang, Ian
Christopher, Sundar A.
description The impact of seasonalities on direct radiative effects (DREs) and radiative heating rates (RHRs) of absorbing aerosols above clouds in the southeast Atlantic is examined using radiative transfer calculations. For an aerosol optical thickness of 0.6 located between 0 and 4 km, a cloud optical thickness of 9.0 and a cloud effective radius of 12.8 µm at 0.55 µm located between 1 and 2 km, the diurnally averaged RHR at noon in the aerosol layer increases from ∼6.6 K day−1 in June to ∼8.9 K day−1 in October. In June (October), the RHR in the cloud layer at noon is 1.3 (1.7) K day−1 higher than the case of pristine clouds. However, an elevated aerosol layer (2–4 km) reduces the RHR by ∼0.2 K day−1 in the cloud layer relative to a pristine cloudy case. The DRE at top‐of‐atmosphere (TOA) reaches its peak when the solar zenith angle (SZA) is 54°. The DRE increases (decreases) with SZA for SZA less (greater) than 54°. The primary peak DRE is ∼29.5 W m−2 at 5.0°S 5.0°E, occurring at 0800 UTC. At noon, the DRE at TOA is ∼18.9, ∼20.5 and ∼23.1 W m−2 at 5.0°S, 15.0°S and 25.0°S along 5.0°E, respectively. This study provides data and theoretical understanding to help positioning science flights that target measurements of above‐cloud aerosol radiative effects.
doi_str_mv 10.1002/qj.3012
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1957825311</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1957825311</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2892-f0a26eefabb735ad6a68aa60e71000d9a95f74f16d5edafe365c99abead042c43</originalsourceid><addsrcrecordid>eNp1kM1Lw0AQxRdRsFbxXwh48CCps5uPbY5S_KQgQgVvyyQ7axPSbLubVvrfu7EevHh68Ob3hpnH2CWHCQcQt5tmkgAXR2zEUynjqYSPYzYCSLK4AChO2Zn3DQBkUsgR2y2WFNWrNVZ9ZE3kCb3tsK37mnxku0jXjsLIoa6xr3cUkTHB8BF2-o-7pKDdZ3D6IWciLL115WAhOettGxKlDWTV2q325-zEYOvp4lfH7P3hfjF7iuevj8-zu3lciWkhYgMociKDZSmTDHWO-RQxB5LhVdAFFpmRqeG5zkijoSTPqqLAklBDKqo0GbOrw961s5st-V41duvCg17xIpNTkSWcB-r6QFXhVO_IqLWrV-j2ioMaSlWbRg2lBvLmQH7VLe3_w9Tbyw_9Deksecg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1957825311</pqid></control><display><type>article</type><title>The impact of seasonalities on direct radiative effects and radiative heating rates of absorbing aerosols above clouds</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Chang, Ian ; Christopher, Sundar A.</creator><creatorcontrib>Chang, Ian ; Christopher, Sundar A.</creatorcontrib><description>The impact of seasonalities on direct radiative effects (DREs) and radiative heating rates (RHRs) of absorbing aerosols above clouds in the southeast Atlantic is examined using radiative transfer calculations. For an aerosol optical thickness of 0.6 located between 0 and 4 km, a cloud optical thickness of 9.0 and a cloud effective radius of 12.8 µm at 0.55 µm located between 1 and 2 km, the diurnally averaged RHR at noon in the aerosol layer increases from ∼6.6 K day−1 in June to ∼8.9 K day−1 in October. In June (October), the RHR in the cloud layer at noon is 1.3 (1.7) K day−1 higher than the case of pristine clouds. However, an elevated aerosol layer (2–4 km) reduces the RHR by ∼0.2 K day−1 in the cloud layer relative to a pristine cloudy case. The DRE at top‐of‐atmosphere (TOA) reaches its peak when the solar zenith angle (SZA) is 54°. The DRE increases (decreases) with SZA for SZA less (greater) than 54°. The primary peak DRE is ∼29.5 W m−2 at 5.0°S 5.0°E, occurring at 0800 UTC. At noon, the DRE at TOA is ∼18.9, ∼20.5 and ∼23.1 W m−2 at 5.0°S, 15.0°S and 25.0°S along 5.0°E, respectively. This study provides data and theoretical understanding to help positioning science flights that target measurements of above‐cloud aerosol radiative effects.</description><identifier>ISSN: 0035-9009</identifier><identifier>EISSN: 1477-870X</identifier><identifier>DOI: 10.1002/qj.3012</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>aerosol absorption ; Aerosol effects ; Aerosols ; aerosol–cloud radiative effects ; biomass‐burning aerosols ; Clouds ; Diurnal ; energy budgets ; Heating ; liquid clouds ; Radiative heating ; radiative heating rates ; Radiative transfer ; Radiative transfer calculations ; Seasons ; Temperature</subject><ispartof>Quarterly journal of the Royal Meteorological Society, 2017-04, Vol.143 (704), p.1395-1405</ispartof><rights>2017 Royal Meteorological Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2892-f0a26eefabb735ad6a68aa60e71000d9a95f74f16d5edafe365c99abead042c43</citedby><cites>FETCH-LOGICAL-c2892-f0a26eefabb735ad6a68aa60e71000d9a95f74f16d5edafe365c99abead042c43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fqj.3012$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fqj.3012$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Chang, Ian</creatorcontrib><creatorcontrib>Christopher, Sundar A.</creatorcontrib><title>The impact of seasonalities on direct radiative effects and radiative heating rates of absorbing aerosols above clouds</title><title>Quarterly journal of the Royal Meteorological Society</title><description>The impact of seasonalities on direct radiative effects (DREs) and radiative heating rates (RHRs) of absorbing aerosols above clouds in the southeast Atlantic is examined using radiative transfer calculations. For an aerosol optical thickness of 0.6 located between 0 and 4 km, a cloud optical thickness of 9.0 and a cloud effective radius of 12.8 µm at 0.55 µm located between 1 and 2 km, the diurnally averaged RHR at noon in the aerosol layer increases from ∼6.6 K day−1 in June to ∼8.9 K day−1 in October. In June (October), the RHR in the cloud layer at noon is 1.3 (1.7) K day−1 higher than the case of pristine clouds. However, an elevated aerosol layer (2–4 km) reduces the RHR by ∼0.2 K day−1 in the cloud layer relative to a pristine cloudy case. The DRE at top‐of‐atmosphere (TOA) reaches its peak when the solar zenith angle (SZA) is 54°. The DRE increases (decreases) with SZA for SZA less (greater) than 54°. The primary peak DRE is ∼29.5 W m−2 at 5.0°S 5.0°E, occurring at 0800 UTC. At noon, the DRE at TOA is ∼18.9, ∼20.5 and ∼23.1 W m−2 at 5.0°S, 15.0°S and 25.0°S along 5.0°E, respectively. This study provides data and theoretical understanding to help positioning science flights that target measurements of above‐cloud aerosol radiative effects.</description><subject>aerosol absorption</subject><subject>Aerosol effects</subject><subject>Aerosols</subject><subject>aerosol–cloud radiative effects</subject><subject>biomass‐burning aerosols</subject><subject>Clouds</subject><subject>Diurnal</subject><subject>energy budgets</subject><subject>Heating</subject><subject>liquid clouds</subject><subject>Radiative heating</subject><subject>radiative heating rates</subject><subject>Radiative transfer</subject><subject>Radiative transfer calculations</subject><subject>Seasons</subject><subject>Temperature</subject><issn>0035-9009</issn><issn>1477-870X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kM1Lw0AQxRdRsFbxXwh48CCps5uPbY5S_KQgQgVvyyQ7axPSbLubVvrfu7EevHh68Ob3hpnH2CWHCQcQt5tmkgAXR2zEUynjqYSPYzYCSLK4AChO2Zn3DQBkUsgR2y2WFNWrNVZ9ZE3kCb3tsK37mnxku0jXjsLIoa6xr3cUkTHB8BF2-o-7pKDdZ3D6IWciLL115WAhOettGxKlDWTV2q325-zEYOvp4lfH7P3hfjF7iuevj8-zu3lciWkhYgMociKDZSmTDHWO-RQxB5LhVdAFFpmRqeG5zkijoSTPqqLAklBDKqo0GbOrw961s5st-V41duvCg17xIpNTkSWcB-r6QFXhVO_IqLWrV-j2ioMaSlWbRg2lBvLmQH7VLe3_w9Tbyw_9Deksecg</recordid><startdate>201704</startdate><enddate>201704</enddate><creator>Chang, Ian</creator><creator>Christopher, Sundar A.</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope></search><sort><creationdate>201704</creationdate><title>The impact of seasonalities on direct radiative effects and radiative heating rates of absorbing aerosols above clouds</title><author>Chang, Ian ; Christopher, Sundar A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2892-f0a26eefabb735ad6a68aa60e71000d9a95f74f16d5edafe365c99abead042c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>aerosol absorption</topic><topic>Aerosol effects</topic><topic>Aerosols</topic><topic>aerosol–cloud radiative effects</topic><topic>biomass‐burning aerosols</topic><topic>Clouds</topic><topic>Diurnal</topic><topic>energy budgets</topic><topic>Heating</topic><topic>liquid clouds</topic><topic>Radiative heating</topic><topic>radiative heating rates</topic><topic>Radiative transfer</topic><topic>Radiative transfer calculations</topic><topic>Seasons</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chang, Ian</creatorcontrib><creatorcontrib>Christopher, Sundar A.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Quarterly journal of the Royal Meteorological Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chang, Ian</au><au>Christopher, Sundar A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The impact of seasonalities on direct radiative effects and radiative heating rates of absorbing aerosols above clouds</atitle><jtitle>Quarterly journal of the Royal Meteorological Society</jtitle><date>2017-04</date><risdate>2017</risdate><volume>143</volume><issue>704</issue><spage>1395</spage><epage>1405</epage><pages>1395-1405</pages><issn>0035-9009</issn><eissn>1477-870X</eissn><abstract>The impact of seasonalities on direct radiative effects (DREs) and radiative heating rates (RHRs) of absorbing aerosols above clouds in the southeast Atlantic is examined using radiative transfer calculations. For an aerosol optical thickness of 0.6 located between 0 and 4 km, a cloud optical thickness of 9.0 and a cloud effective radius of 12.8 µm at 0.55 µm located between 1 and 2 km, the diurnally averaged RHR at noon in the aerosol layer increases from ∼6.6 K day−1 in June to ∼8.9 K day−1 in October. In June (October), the RHR in the cloud layer at noon is 1.3 (1.7) K day−1 higher than the case of pristine clouds. However, an elevated aerosol layer (2–4 km) reduces the RHR by ∼0.2 K day−1 in the cloud layer relative to a pristine cloudy case. The DRE at top‐of‐atmosphere (TOA) reaches its peak when the solar zenith angle (SZA) is 54°. The DRE increases (decreases) with SZA for SZA less (greater) than 54°. The primary peak DRE is ∼29.5 W m−2 at 5.0°S 5.0°E, occurring at 0800 UTC. At noon, the DRE at TOA is ∼18.9, ∼20.5 and ∼23.1 W m−2 at 5.0°S, 15.0°S and 25.0°S along 5.0°E, respectively. This study provides data and theoretical understanding to help positioning science flights that target measurements of above‐cloud aerosol radiative effects.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/qj.3012</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0035-9009
ispartof Quarterly journal of the Royal Meteorological Society, 2017-04, Vol.143 (704), p.1395-1405
issn 0035-9009
1477-870X
language eng
recordid cdi_proquest_journals_1957825311
source Wiley Online Library Journals Frontfile Complete
subjects aerosol absorption
Aerosol effects
Aerosols
aerosol–cloud radiative effects
biomass‐burning aerosols
Clouds
Diurnal
energy budgets
Heating
liquid clouds
Radiative heating
radiative heating rates
Radiative transfer
Radiative transfer calculations
Seasons
Temperature
title The impact of seasonalities on direct radiative effects and radiative heating rates of absorbing aerosols above clouds
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T21%3A22%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20impact%20of%20seasonalities%20on%20direct%20radiative%20effects%20and%20radiative%20heating%20rates%20of%20absorbing%20aerosols%20above%20clouds&rft.jtitle=Quarterly%20journal%20of%20the%20Royal%20Meteorological%20Society&rft.au=Chang,%20Ian&rft.date=2017-04&rft.volume=143&rft.issue=704&rft.spage=1395&rft.epage=1405&rft.pages=1395-1405&rft.issn=0035-9009&rft.eissn=1477-870X&rft_id=info:doi/10.1002/qj.3012&rft_dat=%3Cproquest_cross%3E1957825311%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1957825311&rft_id=info:pmid/&rfr_iscdi=true