A Research on Maximum Symbolic Entropy from Intrinsic Mode Function and Its Application in Fault Diagnosis

Empirical mode decomposition (EMD) is a self-adaptive analysis method for nonlinear and nonstationary signals. It has been widely applied to machinery fault diagnosis and structural damage detection. A novel feature, maximum symbolic entropy of intrinsic mode function based on EMD, is proposed to en...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2017-01, Vol.2017 (2017), p.1-9
Hauptverfasser: Hou, Heping, Liu, Jinjin, Zhang, Haiyan, Xu, Zhuofei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9
container_issue 2017
container_start_page 1
container_title Mathematical problems in engineering
container_volume 2017
creator Hou, Heping
Liu, Jinjin
Zhang, Haiyan
Xu, Zhuofei
description Empirical mode decomposition (EMD) is a self-adaptive analysis method for nonlinear and nonstationary signals. It has been widely applied to machinery fault diagnosis and structural damage detection. A novel feature, maximum symbolic entropy of intrinsic mode function based on EMD, is proposed to enhance the ability of recognition of EMD in this paper. First, a signal is decomposed into a collection of intrinsic mode functions (IMFs) based on the local characteristic time scale of the signal, and then IMFs are transformed into a serious of symbolic sequence with different parameters. Second, it can be found that the entropies of symbolic IMFs are quite different. However, there is always a maximum value for a certain symbolic IMF. Third, take the maximum symbolic entropy as features to describe IMFs from a signal. Finally, the proposed features are applied to evaluate the effect of maximum symbolic entropy in fault diagnosis of rolling bearing, and then the maximum symbolic entropy is compared with other standard time analysis features in a contrast experiment. Although maximum symbolic entropy is only a time domain feature, it can reveal the signal characteristic information accurately. It can also be used in other fields related to EMD method.
doi_str_mv 10.1155/2017/9724502
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1957173525</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1957173525</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-ba7da11c2be9bed86cb9ab6e8f59facb1741d10e84c3ecedd5911c80f45385133</originalsourceid><addsrcrecordid>eNqF0M9LwzAUB_AiCs7pzbMEPGpdXtIs7XHMTQcbgj_AW0nT1GWsSU1adP-9mR149JSXx-e9B98ougR8B8DYiGDgo4yThGFyFA2AjWnMIOHHocYkiYHQ99PozPsNxgQYpINoM0HPyivh5BpZg1biW9ddjV52dWG3WqKZaZ1tdqhytkaL8NHGh_bKlgrNOyNbHaaEKdGi9WjSNGFG_Pa0QXPRbVt0r8WHsV778-ikEluvLg7vMHqbz16nj_Hy6WExnSxjSce4jQvBSwEgSaGyQpXpWBaZKMYqrVhWCVkAT6AErNJEUiVVWbIs6BRXCaMpA0qH0XW_t3H2s1O-zTe2cyaczCFjHDhlhAV12yvprPdOVXnjdC3cLgec79PM92nmhzQDv-n5WptSfOn_9FWvVTCqEn8aMsJToD8Qt377</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1957173525</pqid></control><display><type>article</type><title>A Research on Maximum Symbolic Entropy from Intrinsic Mode Function and Its Application in Fault Diagnosis</title><source>Wiley Online Library Open Access</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Hou, Heping ; Liu, Jinjin ; Zhang, Haiyan ; Xu, Zhuofei</creator><contributor>Paolone, Achille</contributor><creatorcontrib>Hou, Heping ; Liu, Jinjin ; Zhang, Haiyan ; Xu, Zhuofei ; Paolone, Achille</creatorcontrib><description>Empirical mode decomposition (EMD) is a self-adaptive analysis method for nonlinear and nonstationary signals. It has been widely applied to machinery fault diagnosis and structural damage detection. A novel feature, maximum symbolic entropy of intrinsic mode function based on EMD, is proposed to enhance the ability of recognition of EMD in this paper. First, a signal is decomposed into a collection of intrinsic mode functions (IMFs) based on the local characteristic time scale of the signal, and then IMFs are transformed into a serious of symbolic sequence with different parameters. Second, it can be found that the entropies of symbolic IMFs are quite different. However, there is always a maximum value for a certain symbolic IMF. Third, take the maximum symbolic entropy as features to describe IMFs from a signal. Finally, the proposed features are applied to evaluate the effect of maximum symbolic entropy in fault diagnosis of rolling bearing, and then the maximum symbolic entropy is compared with other standard time analysis features in a contrast experiment. Although maximum symbolic entropy is only a time domain feature, it can reveal the signal characteristic information accurately. It can also be used in other fields related to EMD method.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2017/9724502</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Damage detection ; Decomposition ; Empirical analysis ; Engineering ; Entropy ; Fault diagnosis ; Heart rate ; Machinery ; Methods ; Neural networks ; Noise ; Nonlinear analysis ; Pattern recognition ; Researchers ; Signal processing ; Structural damage</subject><ispartof>Mathematical problems in engineering, 2017-01, Vol.2017 (2017), p.1-9</ispartof><rights>Copyright © 2017 Zhuofei Xu et al.</rights><rights>Copyright © 2017 Zhuofei Xu et al.; This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-ba7da11c2be9bed86cb9ab6e8f59facb1741d10e84c3ecedd5911c80f45385133</citedby><cites>FETCH-LOGICAL-c360t-ba7da11c2be9bed86cb9ab6e8f59facb1741d10e84c3ecedd5911c80f45385133</cites><orcidid>0000-0003-1477-7067</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><contributor>Paolone, Achille</contributor><creatorcontrib>Hou, Heping</creatorcontrib><creatorcontrib>Liu, Jinjin</creatorcontrib><creatorcontrib>Zhang, Haiyan</creatorcontrib><creatorcontrib>Xu, Zhuofei</creatorcontrib><title>A Research on Maximum Symbolic Entropy from Intrinsic Mode Function and Its Application in Fault Diagnosis</title><title>Mathematical problems in engineering</title><description>Empirical mode decomposition (EMD) is a self-adaptive analysis method for nonlinear and nonstationary signals. It has been widely applied to machinery fault diagnosis and structural damage detection. A novel feature, maximum symbolic entropy of intrinsic mode function based on EMD, is proposed to enhance the ability of recognition of EMD in this paper. First, a signal is decomposed into a collection of intrinsic mode functions (IMFs) based on the local characteristic time scale of the signal, and then IMFs are transformed into a serious of symbolic sequence with different parameters. Second, it can be found that the entropies of symbolic IMFs are quite different. However, there is always a maximum value for a certain symbolic IMF. Third, take the maximum symbolic entropy as features to describe IMFs from a signal. Finally, the proposed features are applied to evaluate the effect of maximum symbolic entropy in fault diagnosis of rolling bearing, and then the maximum symbolic entropy is compared with other standard time analysis features in a contrast experiment. Although maximum symbolic entropy is only a time domain feature, it can reveal the signal characteristic information accurately. It can also be used in other fields related to EMD method.</description><subject>Damage detection</subject><subject>Decomposition</subject><subject>Empirical analysis</subject><subject>Engineering</subject><subject>Entropy</subject><subject>Fault diagnosis</subject><subject>Heart rate</subject><subject>Machinery</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Noise</subject><subject>Nonlinear analysis</subject><subject>Pattern recognition</subject><subject>Researchers</subject><subject>Signal processing</subject><subject>Structural damage</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>BENPR</sourceid><recordid>eNqF0M9LwzAUB_AiCs7pzbMEPGpdXtIs7XHMTQcbgj_AW0nT1GWsSU1adP-9mR149JSXx-e9B98ougR8B8DYiGDgo4yThGFyFA2AjWnMIOHHocYkiYHQ99PozPsNxgQYpINoM0HPyivh5BpZg1biW9ddjV52dWG3WqKZaZ1tdqhytkaL8NHGh_bKlgrNOyNbHaaEKdGi9WjSNGFG_Pa0QXPRbVt0r8WHsV778-ikEluvLg7vMHqbz16nj_Hy6WExnSxjSce4jQvBSwEgSaGyQpXpWBaZKMYqrVhWCVkAT6AErNJEUiVVWbIs6BRXCaMpA0qH0XW_t3H2s1O-zTe2cyaczCFjHDhlhAV12yvprPdOVXnjdC3cLgec79PM92nmhzQDv-n5WptSfOn_9FWvVTCqEn8aMsJToD8Qt377</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Hou, Heping</creator><creator>Liu, Jinjin</creator><creator>Zhang, Haiyan</creator><creator>Xu, Zhuofei</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-1477-7067</orcidid></search><sort><creationdate>20170101</creationdate><title>A Research on Maximum Symbolic Entropy from Intrinsic Mode Function and Its Application in Fault Diagnosis</title><author>Hou, Heping ; Liu, Jinjin ; Zhang, Haiyan ; Xu, Zhuofei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-ba7da11c2be9bed86cb9ab6e8f59facb1741d10e84c3ecedd5911c80f45385133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Damage detection</topic><topic>Decomposition</topic><topic>Empirical analysis</topic><topic>Engineering</topic><topic>Entropy</topic><topic>Fault diagnosis</topic><topic>Heart rate</topic><topic>Machinery</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Noise</topic><topic>Nonlinear analysis</topic><topic>Pattern recognition</topic><topic>Researchers</topic><topic>Signal processing</topic><topic>Structural damage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hou, Heping</creatorcontrib><creatorcontrib>Liu, Jinjin</creatorcontrib><creatorcontrib>Zhang, Haiyan</creatorcontrib><creatorcontrib>Xu, Zhuofei</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hou, Heping</au><au>Liu, Jinjin</au><au>Zhang, Haiyan</au><au>Xu, Zhuofei</au><au>Paolone, Achille</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Research on Maximum Symbolic Entropy from Intrinsic Mode Function and Its Application in Fault Diagnosis</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2017-01-01</date><risdate>2017</risdate><volume>2017</volume><issue>2017</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>Empirical mode decomposition (EMD) is a self-adaptive analysis method for nonlinear and nonstationary signals. It has been widely applied to machinery fault diagnosis and structural damage detection. A novel feature, maximum symbolic entropy of intrinsic mode function based on EMD, is proposed to enhance the ability of recognition of EMD in this paper. First, a signal is decomposed into a collection of intrinsic mode functions (IMFs) based on the local characteristic time scale of the signal, and then IMFs are transformed into a serious of symbolic sequence with different parameters. Second, it can be found that the entropies of symbolic IMFs are quite different. However, there is always a maximum value for a certain symbolic IMF. Third, take the maximum symbolic entropy as features to describe IMFs from a signal. Finally, the proposed features are applied to evaluate the effect of maximum symbolic entropy in fault diagnosis of rolling bearing, and then the maximum symbolic entropy is compared with other standard time analysis features in a contrast experiment. Although maximum symbolic entropy is only a time domain feature, it can reveal the signal characteristic information accurately. It can also be used in other fields related to EMD method.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2017/9724502</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1477-7067</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1024-123X
ispartof Mathematical problems in engineering, 2017-01, Vol.2017 (2017), p.1-9
issn 1024-123X
1563-5147
language eng
recordid cdi_proquest_journals_1957173525
source Wiley Online Library Open Access; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Damage detection
Decomposition
Empirical analysis
Engineering
Entropy
Fault diagnosis
Heart rate
Machinery
Methods
Neural networks
Noise
Nonlinear analysis
Pattern recognition
Researchers
Signal processing
Structural damage
title A Research on Maximum Symbolic Entropy from Intrinsic Mode Function and Its Application in Fault Diagnosis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T04%3A48%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Research%20on%20Maximum%20Symbolic%20Entropy%20from%20Intrinsic%20Mode%20Function%20and%20Its%20Application%20in%20Fault%20Diagnosis&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Hou,%20Heping&rft.date=2017-01-01&rft.volume=2017&rft.issue=2017&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2017/9724502&rft_dat=%3Cproquest_cross%3E1957173525%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1957173525&rft_id=info:pmid/&rfr_iscdi=true