Constant angle surfaces in the Lorentzian Heisenberg group

In this paper, we define and, then, we characterize constant angle spacelike and timelike surfaces in the three-dimensional Heisenberg group, equipped with a 1-parameter family of Lorentzian metrics. In particular, we give an explicit local parametrization of these surfaces and we produce some examp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archiv der Mathematik 2017-12, Vol.109 (6), p.575-589
Hauptverfasser: Onnis, Irene I., Piu, Paola
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 589
container_issue 6
container_start_page 575
container_title Archiv der Mathematik
container_volume 109
creator Onnis, Irene I.
Piu, Paola
description In this paper, we define and, then, we characterize constant angle spacelike and timelike surfaces in the three-dimensional Heisenberg group, equipped with a 1-parameter family of Lorentzian metrics. In particular, we give an explicit local parametrization of these surfaces and we produce some examples.
doi_str_mv 10.1007/s00013-017-1104-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1956555860</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1956555860</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-130755ac9199f52a9d5d736d9b21eddef0369897ee5aec63bdac316d99800c283</originalsourceid><addsrcrecordid>eNp1kLFOwzAQQC0EEqXwAWyWmA13ce3YbKgCilSJBSQ2y40vIVVxip0M8PWkCgML0w333p30GLtEuEaA8iYDAEoBWApEWAh9xGa4KEAYK80xm41rKYyxb6fsLOftCBemtDN2u-xi7n3suY_NjngeUu0ryryNvH8nvu4Sxf679ZGvqM0UN5Qa3qRu2J-zk9rvMl38zjl7fbh_Wa7E-vnxaXm3FpVE3QuUUCrlK4vW1qrwNqhQSh3spkAKgWqQ2hpbEilPlZab4A9isNYAVIWRc3Y13d2n7nOg3LttN6Q4vnRolVZKGQ0jhRNVpS7nRLXbp_bDpy-H4A6J3JTIjYncIZHTo1NMTh7Z2FD6c_lf6QftF2hI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1956555860</pqid></control><display><type>article</type><title>Constant angle surfaces in the Lorentzian Heisenberg group</title><source>SpringerLink Journals - AutoHoldings</source><creator>Onnis, Irene I. ; Piu, Paola</creator><creatorcontrib>Onnis, Irene I. ; Piu, Paola</creatorcontrib><description>In this paper, we define and, then, we characterize constant angle spacelike and timelike surfaces in the three-dimensional Heisenberg group, equipped with a 1-parameter family of Lorentzian metrics. In particular, we give an explicit local parametrization of these surfaces and we produce some examples.</description><identifier>ISSN: 0003-889X</identifier><identifier>EISSN: 1420-8938</identifier><identifier>DOI: 10.1007/s00013-017-1104-6</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Mathematics ; Mathematics and Statistics ; Parameterization</subject><ispartof>Archiv der Mathematik, 2017-12, Vol.109 (6), p.575-589</ispartof><rights>Springer International Publishing AG 2017</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-130755ac9199f52a9d5d736d9b21eddef0369897ee5aec63bdac316d99800c283</citedby><cites>FETCH-LOGICAL-c316t-130755ac9199f52a9d5d736d9b21eddef0369897ee5aec63bdac316d99800c283</cites><orcidid>0000-0001-5183-4820</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00013-017-1104-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00013-017-1104-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Onnis, Irene I.</creatorcontrib><creatorcontrib>Piu, Paola</creatorcontrib><title>Constant angle surfaces in the Lorentzian Heisenberg group</title><title>Archiv der Mathematik</title><addtitle>Arch. Math</addtitle><description>In this paper, we define and, then, we characterize constant angle spacelike and timelike surfaces in the three-dimensional Heisenberg group, equipped with a 1-parameter family of Lorentzian metrics. In particular, we give an explicit local parametrization of these surfaces and we produce some examples.</description><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Parameterization</subject><issn>0003-889X</issn><issn>1420-8938</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kLFOwzAQQC0EEqXwAWyWmA13ce3YbKgCilSJBSQ2y40vIVVxip0M8PWkCgML0w333p30GLtEuEaA8iYDAEoBWApEWAh9xGa4KEAYK80xm41rKYyxb6fsLOftCBemtDN2u-xi7n3suY_NjngeUu0ryryNvH8nvu4Sxf679ZGvqM0UN5Qa3qRu2J-zk9rvMl38zjl7fbh_Wa7E-vnxaXm3FpVE3QuUUCrlK4vW1qrwNqhQSh3spkAKgWqQ2hpbEilPlZab4A9isNYAVIWRc3Y13d2n7nOg3LttN6Q4vnRolVZKGQ0jhRNVpS7nRLXbp_bDpy-H4A6J3JTIjYncIZHTo1NMTh7Z2FD6c_lf6QftF2hI</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Onnis, Irene I.</creator><creator>Piu, Paola</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5183-4820</orcidid></search><sort><creationdate>20171201</creationdate><title>Constant angle surfaces in the Lorentzian Heisenberg group</title><author>Onnis, Irene I. ; Piu, Paola</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-130755ac9199f52a9d5d736d9b21eddef0369897ee5aec63bdac316d99800c283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Parameterization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Onnis, Irene I.</creatorcontrib><creatorcontrib>Piu, Paola</creatorcontrib><collection>CrossRef</collection><jtitle>Archiv der Mathematik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Onnis, Irene I.</au><au>Piu, Paola</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Constant angle surfaces in the Lorentzian Heisenberg group</atitle><jtitle>Archiv der Mathematik</jtitle><stitle>Arch. Math</stitle><date>2017-12-01</date><risdate>2017</risdate><volume>109</volume><issue>6</issue><spage>575</spage><epage>589</epage><pages>575-589</pages><issn>0003-889X</issn><eissn>1420-8938</eissn><abstract>In this paper, we define and, then, we characterize constant angle spacelike and timelike surfaces in the three-dimensional Heisenberg group, equipped with a 1-parameter family of Lorentzian metrics. In particular, we give an explicit local parametrization of these surfaces and we produce some examples.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00013-017-1104-6</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-5183-4820</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-889X
ispartof Archiv der Mathematik, 2017-12, Vol.109 (6), p.575-589
issn 0003-889X
1420-8938
language eng
recordid cdi_proquest_journals_1956555860
source SpringerLink Journals - AutoHoldings
subjects Mathematics
Mathematics and Statistics
Parameterization
title Constant angle surfaces in the Lorentzian Heisenberg group
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T08%3A49%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Constant%20angle%20surfaces%20in%20the%20Lorentzian%20Heisenberg%20group&rft.jtitle=Archiv%20der%20Mathematik&rft.au=Onnis,%20Irene%20I.&rft.date=2017-12-01&rft.volume=109&rft.issue=6&rft.spage=575&rft.epage=589&rft.pages=575-589&rft.issn=0003-889X&rft.eissn=1420-8938&rft_id=info:doi/10.1007/s00013-017-1104-6&rft_dat=%3Cproquest_cross%3E1956555860%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1956555860&rft_id=info:pmid/&rfr_iscdi=true