Synthetic approaches to two-dimensional transition metal dichalcogenide nanosheets

Two-dimensional transition metal dichalcogenides (TMDCs) have become the focus of intense research due to their unique physical and chemical properties. These features arise from the anisotropic effects of the materials as it is thinned towards a monolayer. Several review articles have exhaustively...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Progress in materials science 2017-08, Vol.89, p.411-478
Hauptverfasser: Brent, Jack R., Savjani, Nicky, O'Brien, Paul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Two-dimensional transition metal dichalcogenides (TMDCs) have become the focus of intense research due to their unique physical and chemical properties. These features arise from the anisotropic effects of the materials as it is thinned towards a monolayer. Several review articles have exhaustively examined the structures and applications of such materials, whereas relatively little critical analysis has been applied to the ever-expanding array of synthetic methods. This review thoroughly documents all synthetic methods to 2D-TMDCs (by both 'top-down' and 'bottom-up' approaches) published up to January 2015, by considering the quality and characteristics of the nanosheets produced. This work has been achieved by directly comparing the crystallinity, dimensions, yields and electronic properties of selected TMDC nanosheets with respect to each method. Finally this review concludes with an examination of the next generation 2D-TMDCs that explores the production of ternary TMDC nanosheets, heterojunctions between two TMDCs, and the production of patterned nanosheet surfaces.
ISSN:0079-6425
1873-2208
DOI:10.1016/j.pmatsci.2017.06.002