Importance Sampling: Intrinsic Dimension and Computational Cost
The basic idea of importance sampling is to use independent samples from a proposal measure in order to approximate expectations with respect to a target measure. It is key to understand how many samples are required in order to guarantee accurate approximations. Intuitively, some notion of distance...
Gespeichert in:
Veröffentlicht in: | Statistical science 2017-08, Vol.32 (3), p.405-431 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 431 |
---|---|
container_issue | 3 |
container_start_page | 405 |
container_title | Statistical science |
container_volume | 32 |
creator | Agapiou, S. Papaspiliopoulos, O. Sanz-Alonso, D. Stuart, A. M. |
description | The basic idea of importance sampling is to use independent samples from a proposal measure in order to approximate expectations with respect to a target measure. It is key to understand how many samples are required in order to guarantee accurate approximations. Intuitively, some notion of distance between the target and the proposal should determine the computational cost of the method. A major challenge is to quantify this distance in terms of parameters or statistics that are pertinent for the practitioner. The subject has attracted substantial interest from within a variety of communities. The objective of this paper is to overview and unify the resulting literature by creating an overarching framework. A general theory is presented, with a focus on the use of importance sampling in Bayesian inverse problems and filtering. |
doi_str_mv | 10.1214/17-STS611 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1956487020</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26408299</jstor_id><sourcerecordid>26408299</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-291a348674bc21c60b6933cb0cd873fc64e7420c72fcec3af3007b2c05869f543</originalsourceid><addsrcrecordid>eNo90E1LxDAQBuAgCtbVgz9AKHjyUJ1J0iT1IlK_FhY87HoOaTaVLtumJtmD_95KxdPMCw_D8BJyiXCLFPkdymK9WQvEI5JRFKpQkpfHJAOlWMEpk6fkLMYdAJQCeUYelv3oQzKDdfna9OO-Gz7v8-WQQjfEzuZPXe-mxQ-5GbZ57fvxkEyastlPKaZzctKafXQXf3NBPl6eN_VbsXp_XdaPq8KykqeCVmgYV0LyxlK0AhpRMWYbsFslWWsFd5JTsJK21llmWgYgG2qhVKJqS84W5Hq-Owb_dXAx6Z0_hOmLqLEqBVcSKEzqZlY2-BiDa_UYut6Eb42gf_vRKPXcz2SvZruLyYd_SAUHRauK_QCBc2A_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1956487020</pqid></control><display><type>article</type><title>Importance Sampling: Intrinsic Dimension and Computational Cost</title><source>JSTOR Mathematics & Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Project Euclid Complete</source><creator>Agapiou, S. ; Papaspiliopoulos, O. ; Sanz-Alonso, D. ; Stuart, A. M.</creator><creatorcontrib>Agapiou, S. ; Papaspiliopoulos, O. ; Sanz-Alonso, D. ; Stuart, A. M.</creatorcontrib><description>The basic idea of importance sampling is to use independent samples from a proposal measure in order to approximate expectations with respect to a target measure. It is key to understand how many samples are required in order to guarantee accurate approximations. Intuitively, some notion of distance between the target and the proposal should determine the computational cost of the method. A major challenge is to quantify this distance in terms of parameters or statistics that are pertinent for the practitioner. The subject has attracted substantial interest from within a variety of communities. The objective of this paper is to overview and unify the resulting literature by creating an overarching framework. A general theory is presented, with a focus on the use of importance sampling in Bayesian inverse problems and filtering.</description><identifier>ISSN: 0883-4237</identifier><identifier>EISSN: 2168-8745</identifier><identifier>DOI: 10.1214/17-STS611</identifier><language>eng</language><publisher>Hayward: Institute of Mathematical Statistics</publisher><subject>Approximation ; Bayesian analysis ; Computational efficiency ; Filtration ; Importance sampling ; Independent sample ; Inverse problems ; Rational expectations ; Sampling ; Statistical analysis ; Statistical methods ; Statistics</subject><ispartof>Statistical science, 2017-08, Vol.32 (3), p.405-431</ispartof><rights>Copyright © 2017 Institute of Mathematical Statistics</rights><rights>Copyright Institute of Mathematical Statistics Aug 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-291a348674bc21c60b6933cb0cd873fc64e7420c72fcec3af3007b2c05869f543</citedby><cites>FETCH-LOGICAL-c354t-291a348674bc21c60b6933cb0cd873fc64e7420c72fcec3af3007b2c05869f543</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26408299$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26408299$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,27924,27925,58017,58021,58250,58254</link.rule.ids></links><search><creatorcontrib>Agapiou, S.</creatorcontrib><creatorcontrib>Papaspiliopoulos, O.</creatorcontrib><creatorcontrib>Sanz-Alonso, D.</creatorcontrib><creatorcontrib>Stuart, A. M.</creatorcontrib><title>Importance Sampling: Intrinsic Dimension and Computational Cost</title><title>Statistical science</title><description>The basic idea of importance sampling is to use independent samples from a proposal measure in order to approximate expectations with respect to a target measure. It is key to understand how many samples are required in order to guarantee accurate approximations. Intuitively, some notion of distance between the target and the proposal should determine the computational cost of the method. A major challenge is to quantify this distance in terms of parameters or statistics that are pertinent for the practitioner. The subject has attracted substantial interest from within a variety of communities. The objective of this paper is to overview and unify the resulting literature by creating an overarching framework. A general theory is presented, with a focus on the use of importance sampling in Bayesian inverse problems and filtering.</description><subject>Approximation</subject><subject>Bayesian analysis</subject><subject>Computational efficiency</subject><subject>Filtration</subject><subject>Importance sampling</subject><subject>Independent sample</subject><subject>Inverse problems</subject><subject>Rational expectations</subject><subject>Sampling</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Statistics</subject><issn>0883-4237</issn><issn>2168-8745</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo90E1LxDAQBuAgCtbVgz9AKHjyUJ1J0iT1IlK_FhY87HoOaTaVLtumJtmD_95KxdPMCw_D8BJyiXCLFPkdymK9WQvEI5JRFKpQkpfHJAOlWMEpk6fkLMYdAJQCeUYelv3oQzKDdfna9OO-Gz7v8-WQQjfEzuZPXe-mxQ-5GbZ57fvxkEyastlPKaZzctKafXQXf3NBPl6eN_VbsXp_XdaPq8KykqeCVmgYV0LyxlK0AhpRMWYbsFslWWsFd5JTsJK21llmWgYgG2qhVKJqS84W5Hq-Owb_dXAx6Z0_hOmLqLEqBVcSKEzqZlY2-BiDa_UYut6Eb42gf_vRKPXcz2SvZruLyYd_SAUHRauK_QCBc2A_</recordid><startdate>20170801</startdate><enddate>20170801</enddate><creator>Agapiou, S.</creator><creator>Papaspiliopoulos, O.</creator><creator>Sanz-Alonso, D.</creator><creator>Stuart, A. M.</creator><general>Institute of Mathematical Statistics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170801</creationdate><title>Importance Sampling: Intrinsic Dimension and Computational Cost</title><author>Agapiou, S. ; Papaspiliopoulos, O. ; Sanz-Alonso, D. ; Stuart, A. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-291a348674bc21c60b6933cb0cd873fc64e7420c72fcec3af3007b2c05869f543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Approximation</topic><topic>Bayesian analysis</topic><topic>Computational efficiency</topic><topic>Filtration</topic><topic>Importance sampling</topic><topic>Independent sample</topic><topic>Inverse problems</topic><topic>Rational expectations</topic><topic>Sampling</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Agapiou, S.</creatorcontrib><creatorcontrib>Papaspiliopoulos, O.</creatorcontrib><creatorcontrib>Sanz-Alonso, D.</creatorcontrib><creatorcontrib>Stuart, A. M.</creatorcontrib><collection>CrossRef</collection><jtitle>Statistical science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Agapiou, S.</au><au>Papaspiliopoulos, O.</au><au>Sanz-Alonso, D.</au><au>Stuart, A. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Importance Sampling: Intrinsic Dimension and Computational Cost</atitle><jtitle>Statistical science</jtitle><date>2017-08-01</date><risdate>2017</risdate><volume>32</volume><issue>3</issue><spage>405</spage><epage>431</epage><pages>405-431</pages><issn>0883-4237</issn><eissn>2168-8745</eissn><abstract>The basic idea of importance sampling is to use independent samples from a proposal measure in order to approximate expectations with respect to a target measure. It is key to understand how many samples are required in order to guarantee accurate approximations. Intuitively, some notion of distance between the target and the proposal should determine the computational cost of the method. A major challenge is to quantify this distance in terms of parameters or statistics that are pertinent for the practitioner. The subject has attracted substantial interest from within a variety of communities. The objective of this paper is to overview and unify the resulting literature by creating an overarching framework. A general theory is presented, with a focus on the use of importance sampling in Bayesian inverse problems and filtering.</abstract><cop>Hayward</cop><pub>Institute of Mathematical Statistics</pub><doi>10.1214/17-STS611</doi><tpages>27</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0883-4237 |
ispartof | Statistical science, 2017-08, Vol.32 (3), p.405-431 |
issn | 0883-4237 2168-8745 |
language | eng |
recordid | cdi_proquest_journals_1956487020 |
source | JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; EZB-FREE-00999 freely available EZB journals; Project Euclid Complete |
subjects | Approximation Bayesian analysis Computational efficiency Filtration Importance sampling Independent sample Inverse problems Rational expectations Sampling Statistical analysis Statistical methods Statistics |
title | Importance Sampling: Intrinsic Dimension and Computational Cost |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T20%3A46%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Importance%20Sampling:%20Intrinsic%20Dimension%20and%20Computational%20Cost&rft.jtitle=Statistical%20science&rft.au=Agapiou,%20S.&rft.date=2017-08-01&rft.volume=32&rft.issue=3&rft.spage=405&rft.epage=431&rft.pages=405-431&rft.issn=0883-4237&rft.eissn=2168-8745&rft_id=info:doi/10.1214/17-STS611&rft_dat=%3Cjstor_proqu%3E26408299%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1956487020&rft_id=info:pmid/&rft_jstor_id=26408299&rfr_iscdi=true |