Importance Sampling: Intrinsic Dimension and Computational Cost

The basic idea of importance sampling is to use independent samples from a proposal measure in order to approximate expectations with respect to a target measure. It is key to understand how many samples are required in order to guarantee accurate approximations. Intuitively, some notion of distance...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistical science 2017-08, Vol.32 (3), p.405-431
Hauptverfasser: Agapiou, S., Papaspiliopoulos, O., Sanz-Alonso, D., Stuart, A. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 431
container_issue 3
container_start_page 405
container_title Statistical science
container_volume 32
creator Agapiou, S.
Papaspiliopoulos, O.
Sanz-Alonso, D.
Stuart, A. M.
description The basic idea of importance sampling is to use independent samples from a proposal measure in order to approximate expectations with respect to a target measure. It is key to understand how many samples are required in order to guarantee accurate approximations. Intuitively, some notion of distance between the target and the proposal should determine the computational cost of the method. A major challenge is to quantify this distance in terms of parameters or statistics that are pertinent for the practitioner. The subject has attracted substantial interest from within a variety of communities. The objective of this paper is to overview and unify the resulting literature by creating an overarching framework. A general theory is presented, with a focus on the use of importance sampling in Bayesian inverse problems and filtering.
doi_str_mv 10.1214/17-STS611
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1956487020</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26408299</jstor_id><sourcerecordid>26408299</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-291a348674bc21c60b6933cb0cd873fc64e7420c72fcec3af3007b2c05869f543</originalsourceid><addsrcrecordid>eNo90E1LxDAQBuAgCtbVgz9AKHjyUJ1J0iT1IlK_FhY87HoOaTaVLtumJtmD_95KxdPMCw_D8BJyiXCLFPkdymK9WQvEI5JRFKpQkpfHJAOlWMEpk6fkLMYdAJQCeUYelv3oQzKDdfna9OO-Gz7v8-WQQjfEzuZPXe-mxQ-5GbZ57fvxkEyastlPKaZzctKafXQXf3NBPl6eN_VbsXp_XdaPq8KykqeCVmgYV0LyxlK0AhpRMWYbsFslWWsFd5JTsJK21llmWgYgG2qhVKJqS84W5Hq-Owb_dXAx6Z0_hOmLqLEqBVcSKEzqZlY2-BiDa_UYut6Eb42gf_vRKPXcz2SvZruLyYd_SAUHRauK_QCBc2A_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1956487020</pqid></control><display><type>article</type><title>Importance Sampling: Intrinsic Dimension and Computational Cost</title><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Project Euclid Complete</source><creator>Agapiou, S. ; Papaspiliopoulos, O. ; Sanz-Alonso, D. ; Stuart, A. M.</creator><creatorcontrib>Agapiou, S. ; Papaspiliopoulos, O. ; Sanz-Alonso, D. ; Stuart, A. M.</creatorcontrib><description>The basic idea of importance sampling is to use independent samples from a proposal measure in order to approximate expectations with respect to a target measure. It is key to understand how many samples are required in order to guarantee accurate approximations. Intuitively, some notion of distance between the target and the proposal should determine the computational cost of the method. A major challenge is to quantify this distance in terms of parameters or statistics that are pertinent for the practitioner. The subject has attracted substantial interest from within a variety of communities. The objective of this paper is to overview and unify the resulting literature by creating an overarching framework. A general theory is presented, with a focus on the use of importance sampling in Bayesian inverse problems and filtering.</description><identifier>ISSN: 0883-4237</identifier><identifier>EISSN: 2168-8745</identifier><identifier>DOI: 10.1214/17-STS611</identifier><language>eng</language><publisher>Hayward: Institute of Mathematical Statistics</publisher><subject>Approximation ; Bayesian analysis ; Computational efficiency ; Filtration ; Importance sampling ; Independent sample ; Inverse problems ; Rational expectations ; Sampling ; Statistical analysis ; Statistical methods ; Statistics</subject><ispartof>Statistical science, 2017-08, Vol.32 (3), p.405-431</ispartof><rights>Copyright © 2017 Institute of Mathematical Statistics</rights><rights>Copyright Institute of Mathematical Statistics Aug 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-291a348674bc21c60b6933cb0cd873fc64e7420c72fcec3af3007b2c05869f543</citedby><cites>FETCH-LOGICAL-c354t-291a348674bc21c60b6933cb0cd873fc64e7420c72fcec3af3007b2c05869f543</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26408299$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26408299$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,27924,27925,58017,58021,58250,58254</link.rule.ids></links><search><creatorcontrib>Agapiou, S.</creatorcontrib><creatorcontrib>Papaspiliopoulos, O.</creatorcontrib><creatorcontrib>Sanz-Alonso, D.</creatorcontrib><creatorcontrib>Stuart, A. M.</creatorcontrib><title>Importance Sampling: Intrinsic Dimension and Computational Cost</title><title>Statistical science</title><description>The basic idea of importance sampling is to use independent samples from a proposal measure in order to approximate expectations with respect to a target measure. It is key to understand how many samples are required in order to guarantee accurate approximations. Intuitively, some notion of distance between the target and the proposal should determine the computational cost of the method. A major challenge is to quantify this distance in terms of parameters or statistics that are pertinent for the practitioner. The subject has attracted substantial interest from within a variety of communities. The objective of this paper is to overview and unify the resulting literature by creating an overarching framework. A general theory is presented, with a focus on the use of importance sampling in Bayesian inverse problems and filtering.</description><subject>Approximation</subject><subject>Bayesian analysis</subject><subject>Computational efficiency</subject><subject>Filtration</subject><subject>Importance sampling</subject><subject>Independent sample</subject><subject>Inverse problems</subject><subject>Rational expectations</subject><subject>Sampling</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Statistics</subject><issn>0883-4237</issn><issn>2168-8745</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo90E1LxDAQBuAgCtbVgz9AKHjyUJ1J0iT1IlK_FhY87HoOaTaVLtumJtmD_95KxdPMCw_D8BJyiXCLFPkdymK9WQvEI5JRFKpQkpfHJAOlWMEpk6fkLMYdAJQCeUYelv3oQzKDdfna9OO-Gz7v8-WQQjfEzuZPXe-mxQ-5GbZ57fvxkEyastlPKaZzctKafXQXf3NBPl6eN_VbsXp_XdaPq8KykqeCVmgYV0LyxlK0AhpRMWYbsFslWWsFd5JTsJK21llmWgYgG2qhVKJqS84W5Hq-Owb_dXAx6Z0_hOmLqLEqBVcSKEzqZlY2-BiDa_UYut6Eb42gf_vRKPXcz2SvZruLyYd_SAUHRauK_QCBc2A_</recordid><startdate>20170801</startdate><enddate>20170801</enddate><creator>Agapiou, S.</creator><creator>Papaspiliopoulos, O.</creator><creator>Sanz-Alonso, D.</creator><creator>Stuart, A. M.</creator><general>Institute of Mathematical Statistics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170801</creationdate><title>Importance Sampling: Intrinsic Dimension and Computational Cost</title><author>Agapiou, S. ; Papaspiliopoulos, O. ; Sanz-Alonso, D. ; Stuart, A. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-291a348674bc21c60b6933cb0cd873fc64e7420c72fcec3af3007b2c05869f543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Approximation</topic><topic>Bayesian analysis</topic><topic>Computational efficiency</topic><topic>Filtration</topic><topic>Importance sampling</topic><topic>Independent sample</topic><topic>Inverse problems</topic><topic>Rational expectations</topic><topic>Sampling</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Agapiou, S.</creatorcontrib><creatorcontrib>Papaspiliopoulos, O.</creatorcontrib><creatorcontrib>Sanz-Alonso, D.</creatorcontrib><creatorcontrib>Stuart, A. M.</creatorcontrib><collection>CrossRef</collection><jtitle>Statistical science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Agapiou, S.</au><au>Papaspiliopoulos, O.</au><au>Sanz-Alonso, D.</au><au>Stuart, A. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Importance Sampling: Intrinsic Dimension and Computational Cost</atitle><jtitle>Statistical science</jtitle><date>2017-08-01</date><risdate>2017</risdate><volume>32</volume><issue>3</issue><spage>405</spage><epage>431</epage><pages>405-431</pages><issn>0883-4237</issn><eissn>2168-8745</eissn><abstract>The basic idea of importance sampling is to use independent samples from a proposal measure in order to approximate expectations with respect to a target measure. It is key to understand how many samples are required in order to guarantee accurate approximations. Intuitively, some notion of distance between the target and the proposal should determine the computational cost of the method. A major challenge is to quantify this distance in terms of parameters or statistics that are pertinent for the practitioner. The subject has attracted substantial interest from within a variety of communities. The objective of this paper is to overview and unify the resulting literature by creating an overarching framework. A general theory is presented, with a focus on the use of importance sampling in Bayesian inverse problems and filtering.</abstract><cop>Hayward</cop><pub>Institute of Mathematical Statistics</pub><doi>10.1214/17-STS611</doi><tpages>27</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0883-4237
ispartof Statistical science, 2017-08, Vol.32 (3), p.405-431
issn 0883-4237
2168-8745
language eng
recordid cdi_proquest_journals_1956487020
source JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; EZB-FREE-00999 freely available EZB journals; Project Euclid Complete
subjects Approximation
Bayesian analysis
Computational efficiency
Filtration
Importance sampling
Independent sample
Inverse problems
Rational expectations
Sampling
Statistical analysis
Statistical methods
Statistics
title Importance Sampling: Intrinsic Dimension and Computational Cost
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T20%3A46%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Importance%20Sampling:%20Intrinsic%20Dimension%20and%20Computational%20Cost&rft.jtitle=Statistical%20science&rft.au=Agapiou,%20S.&rft.date=2017-08-01&rft.volume=32&rft.issue=3&rft.spage=405&rft.epage=431&rft.pages=405-431&rft.issn=0883-4237&rft.eissn=2168-8745&rft_id=info:doi/10.1214/17-STS611&rft_dat=%3Cjstor_proqu%3E26408299%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1956487020&rft_id=info:pmid/&rft_jstor_id=26408299&rfr_iscdi=true