Design optimization of graphene laminates for maximum fundamental frequency
Design optimization of nanostructures is a new challenging research area. The modelling of multilayer graphene sheets has a similar character as the modelling of composite laminates. However, the traditional laminate plate theories are revised in order to incorporate nonlocal elasticity. The main ai...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Estonian Academy of Sciences 2017-12, Vol.66 (4), p.354-362 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 362 |
---|---|
container_issue | 4 |
container_start_page | 354 |
container_title | Proceedings of the Estonian Academy of Sciences |
container_volume | 66 |
creator | Majak, J Kirs, M Eerme, M Tungel, E Lepikult, T |
description | Design optimization of nanostructures is a new challenging research area. The modelling of multilayer graphene sheets has a similar character as the modelling of composite laminates. However, the traditional laminate plate theories are revised in order to incorporate nonlocal elasticity. The main aim of the current study is to point out the crotchet features arising in the design optimization of graphene laminates based on the theoretical analysis performed and numerical results obtained. The study is focused on the improvement of the mechanical performance of graphene and nanostructures, particularly vibration properties of multilayer graphene laminates. Key words: graphene laminates, design optimization, genetic algorithms. |
doi_str_mv | 10.3176/proc.2017.4.08 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_1956435575</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A519074849</galeid><sourcerecordid>A519074849</sourcerecordid><originalsourceid>FETCH-LOGICAL-c329t-f8ab9d28f7646c9c09fae342fac88333a81fb03a817c2324769a8a53c85daf683</originalsourceid><addsrcrecordid>eNptUU1LxDAQLaLg-nH1XPDcmjRpmhyX9RMXvOg5zKbJmqVJa9KC6683xcXTMoc3M7yZx-Nl2Q1GJcENuxtCr8oK4aakJeIn2QI3hBVNTdDpoWeIsvPsIsYdQoxUgiyy13sd7dbn_TBaZ39gtH0aTL4NMHxqr_MOnPUw6pibPuQOvq2bXG4m34LTfoQuN0F_Tdqr_VV2ZqCL-vqAl9nH48P76rlYvz29rJbrQiXNsTAcNqKtuGkYZUooJAxoQisDinNCCHBsNmiGRlWkog0TwKEmitctGMbJZXb79zc5TspxlLt-Cj5JSixqRkldJ9f_rC10Wlpv-jGAcjYquayxQA3lVCRWeYSVqtXOqt5rY9P-2IEKfYxBGzkE6yDsJUZyzkHOOcg5B0kl4uQXC9R7Ow</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1956435575</pqid></control><display><type>article</type><title>Design optimization of graphene laminates for maximum fundamental frequency</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Majak, J ; Kirs, M ; Eerme, M ; Tungel, E ; Lepikult, T</creator><creatorcontrib>Majak, J ; Kirs, M ; Eerme, M ; Tungel, E ; Lepikult, T</creatorcontrib><description>Design optimization of nanostructures is a new challenging research area. The modelling of multilayer graphene sheets has a similar character as the modelling of composite laminates. However, the traditional laminate plate theories are revised in order to incorporate nonlocal elasticity. The main aim of the current study is to point out the crotchet features arising in the design optimization of graphene laminates based on the theoretical analysis performed and numerical results obtained. The study is focused on the improvement of the mechanical performance of graphene and nanostructures, particularly vibration properties of multilayer graphene laminates. Key words: graphene laminates, design optimization, genetic algorithms.</description><identifier>ISSN: 1736-6046</identifier><identifier>EISSN: 1736-7530</identifier><identifier>DOI: 10.3176/proc.2017.4.08</identifier><language>eng</language><publisher>Tallinn: Estonian Academy Publishers</publisher><subject>Design ; Design and construction ; Design optimization ; Elasticity ; Euclidean space ; Graphene ; Laminates ; Mathematical models ; Mechanical properties ; Mechanics ; Methods ; Nonlocal elasticity ; Optimization theory ; Theoretical analysis ; Vibration analysis</subject><ispartof>Proceedings of the Estonian Academy of Sciences, 2017-12, Vol.66 (4), p.354-362</ispartof><rights>COPYRIGHT 2017 Estonian Academy Publishers</rights><rights>Copyright Teaduste Akadeemia Kirjastus (Estonian Academy Publishers) 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,866,27933,27934</link.rule.ids></links><search><creatorcontrib>Majak, J</creatorcontrib><creatorcontrib>Kirs, M</creatorcontrib><creatorcontrib>Eerme, M</creatorcontrib><creatorcontrib>Tungel, E</creatorcontrib><creatorcontrib>Lepikult, T</creatorcontrib><title>Design optimization of graphene laminates for maximum fundamental frequency</title><title>Proceedings of the Estonian Academy of Sciences</title><description>Design optimization of nanostructures is a new challenging research area. The modelling of multilayer graphene sheets has a similar character as the modelling of composite laminates. However, the traditional laminate plate theories are revised in order to incorporate nonlocal elasticity. The main aim of the current study is to point out the crotchet features arising in the design optimization of graphene laminates based on the theoretical analysis performed and numerical results obtained. The study is focused on the improvement of the mechanical performance of graphene and nanostructures, particularly vibration properties of multilayer graphene laminates. Key words: graphene laminates, design optimization, genetic algorithms.</description><subject>Design</subject><subject>Design and construction</subject><subject>Design optimization</subject><subject>Elasticity</subject><subject>Euclidean space</subject><subject>Graphene</subject><subject>Laminates</subject><subject>Mathematical models</subject><subject>Mechanical properties</subject><subject>Mechanics</subject><subject>Methods</subject><subject>Nonlocal elasticity</subject><subject>Optimization theory</subject><subject>Theoretical analysis</subject><subject>Vibration analysis</subject><issn>1736-6046</issn><issn>1736-7530</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNptUU1LxDAQLaLg-nH1XPDcmjRpmhyX9RMXvOg5zKbJmqVJa9KC6683xcXTMoc3M7yZx-Nl2Q1GJcENuxtCr8oK4aakJeIn2QI3hBVNTdDpoWeIsvPsIsYdQoxUgiyy13sd7dbn_TBaZ39gtH0aTL4NMHxqr_MOnPUw6pibPuQOvq2bXG4m34LTfoQuN0F_Tdqr_VV2ZqCL-vqAl9nH48P76rlYvz29rJbrQiXNsTAcNqKtuGkYZUooJAxoQisDinNCCHBsNmiGRlWkog0TwKEmitctGMbJZXb79zc5TspxlLt-Cj5JSixqRkldJ9f_rC10Wlpv-jGAcjYquayxQA3lVCRWeYSVqtXOqt5rY9P-2IEKfYxBGzkE6yDsJUZyzkHOOcg5B0kl4uQXC9R7Ow</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Majak, J</creator><creator>Kirs, M</creator><creator>Eerme, M</creator><creator>Tungel, E</creator><creator>Lepikult, T</creator><general>Estonian Academy Publishers</general><general>Teaduste Akadeemia Kirjastus (Estonian Academy Publishers)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7X2</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>BYOGL</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0K</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope></search><sort><creationdate>20171201</creationdate><title>Design optimization of graphene laminates for maximum fundamental frequency</title><author>Majak, J ; Kirs, M ; Eerme, M ; Tungel, E ; Lepikult, T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c329t-f8ab9d28f7646c9c09fae342fac88333a81fb03a817c2324769a8a53c85daf683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Design</topic><topic>Design and construction</topic><topic>Design optimization</topic><topic>Elasticity</topic><topic>Euclidean space</topic><topic>Graphene</topic><topic>Laminates</topic><topic>Mathematical models</topic><topic>Mechanical properties</topic><topic>Mechanics</topic><topic>Methods</topic><topic>Nonlocal elasticity</topic><topic>Optimization theory</topic><topic>Theoretical analysis</topic><topic>Vibration analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Majak, J</creatorcontrib><creatorcontrib>Kirs, M</creatorcontrib><creatorcontrib>Eerme, M</creatorcontrib><creatorcontrib>Tungel, E</creatorcontrib><creatorcontrib>Lepikult, T</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Agricultural Science Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>East Europe, Central Europe Database</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Agricultural Science Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><jtitle>Proceedings of the Estonian Academy of Sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Majak, J</au><au>Kirs, M</au><au>Eerme, M</au><au>Tungel, E</au><au>Lepikult, T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design optimization of graphene laminates for maximum fundamental frequency</atitle><jtitle>Proceedings of the Estonian Academy of Sciences</jtitle><date>2017-12-01</date><risdate>2017</risdate><volume>66</volume><issue>4</issue><spage>354</spage><epage>362</epage><pages>354-362</pages><issn>1736-6046</issn><eissn>1736-7530</eissn><abstract>Design optimization of nanostructures is a new challenging research area. The modelling of multilayer graphene sheets has a similar character as the modelling of composite laminates. However, the traditional laminate plate theories are revised in order to incorporate nonlocal elasticity. The main aim of the current study is to point out the crotchet features arising in the design optimization of graphene laminates based on the theoretical analysis performed and numerical results obtained. The study is focused on the improvement of the mechanical performance of graphene and nanostructures, particularly vibration properties of multilayer graphene laminates. Key words: graphene laminates, design optimization, genetic algorithms.</abstract><cop>Tallinn</cop><pub>Estonian Academy Publishers</pub><doi>10.3176/proc.2017.4.08</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1736-6046 |
ispartof | Proceedings of the Estonian Academy of Sciences, 2017-12, Vol.66 (4), p.354-362 |
issn | 1736-6046 1736-7530 |
language | eng |
recordid | cdi_proquest_journals_1956435575 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Free Full-Text Journals in Chemistry |
subjects | Design Design and construction Design optimization Elasticity Euclidean space Graphene Laminates Mathematical models Mechanical properties Mechanics Methods Nonlocal elasticity Optimization theory Theoretical analysis Vibration analysis |
title | Design optimization of graphene laminates for maximum fundamental frequency |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T12%3A25%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20optimization%20of%20graphene%20laminates%20for%20maximum%20fundamental%20frequency&rft.jtitle=Proceedings%20of%20the%20Estonian%20Academy%20of%20Sciences&rft.au=Majak,%20J&rft.date=2017-12-01&rft.volume=66&rft.issue=4&rft.spage=354&rft.epage=362&rft.pages=354-362&rft.issn=1736-6046&rft.eissn=1736-7530&rft_id=info:doi/10.3176/proc.2017.4.08&rft_dat=%3Cgale_proqu%3EA519074849%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1956435575&rft_id=info:pmid/&rft_galeid=A519074849&rfr_iscdi=true |