Design optimization of graphene laminates for maximum fundamental frequency

Design optimization of nanostructures is a new challenging research area. The modelling of multilayer graphene sheets has a similar character as the modelling of composite laminates. However, the traditional laminate plate theories are revised in order to incorporate nonlocal elasticity. The main ai...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Estonian Academy of Sciences 2017-12, Vol.66 (4), p.354-362
Hauptverfasser: Majak, J, Kirs, M, Eerme, M, Tungel, E, Lepikult, T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 362
container_issue 4
container_start_page 354
container_title Proceedings of the Estonian Academy of Sciences
container_volume 66
creator Majak, J
Kirs, M
Eerme, M
Tungel, E
Lepikult, T
description Design optimization of nanostructures is a new challenging research area. The modelling of multilayer graphene sheets has a similar character as the modelling of composite laminates. However, the traditional laminate plate theories are revised in order to incorporate nonlocal elasticity. The main aim of the current study is to point out the crotchet features arising in the design optimization of graphene laminates based on the theoretical analysis performed and numerical results obtained. The study is focused on the improvement of the mechanical performance of graphene and nanostructures, particularly vibration properties of multilayer graphene laminates. Key words: graphene laminates, design optimization, genetic algorithms.
doi_str_mv 10.3176/proc.2017.4.08
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_1956435575</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A519074849</galeid><sourcerecordid>A519074849</sourcerecordid><originalsourceid>FETCH-LOGICAL-c329t-f8ab9d28f7646c9c09fae342fac88333a81fb03a817c2324769a8a53c85daf683</originalsourceid><addsrcrecordid>eNptUU1LxDAQLaLg-nH1XPDcmjRpmhyX9RMXvOg5zKbJmqVJa9KC6683xcXTMoc3M7yZx-Nl2Q1GJcENuxtCr8oK4aakJeIn2QI3hBVNTdDpoWeIsvPsIsYdQoxUgiyy13sd7dbn_TBaZ39gtH0aTL4NMHxqr_MOnPUw6pibPuQOvq2bXG4m34LTfoQuN0F_Tdqr_VV2ZqCL-vqAl9nH48P76rlYvz29rJbrQiXNsTAcNqKtuGkYZUooJAxoQisDinNCCHBsNmiGRlWkog0TwKEmitctGMbJZXb79zc5TspxlLt-Cj5JSixqRkldJ9f_rC10Wlpv-jGAcjYquayxQA3lVCRWeYSVqtXOqt5rY9P-2IEKfYxBGzkE6yDsJUZyzkHOOcg5B0kl4uQXC9R7Ow</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1956435575</pqid></control><display><type>article</type><title>Design optimization of graphene laminates for maximum fundamental frequency</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Majak, J ; Kirs, M ; Eerme, M ; Tungel, E ; Lepikult, T</creator><creatorcontrib>Majak, J ; Kirs, M ; Eerme, M ; Tungel, E ; Lepikult, T</creatorcontrib><description>Design optimization of nanostructures is a new challenging research area. The modelling of multilayer graphene sheets has a similar character as the modelling of composite laminates. However, the traditional laminate plate theories are revised in order to incorporate nonlocal elasticity. The main aim of the current study is to point out the crotchet features arising in the design optimization of graphene laminates based on the theoretical analysis performed and numerical results obtained. The study is focused on the improvement of the mechanical performance of graphene and nanostructures, particularly vibration properties of multilayer graphene laminates. Key words: graphene laminates, design optimization, genetic algorithms.</description><identifier>ISSN: 1736-6046</identifier><identifier>EISSN: 1736-7530</identifier><identifier>DOI: 10.3176/proc.2017.4.08</identifier><language>eng</language><publisher>Tallinn: Estonian Academy Publishers</publisher><subject>Design ; Design and construction ; Design optimization ; Elasticity ; Euclidean space ; Graphene ; Laminates ; Mathematical models ; Mechanical properties ; Mechanics ; Methods ; Nonlocal elasticity ; Optimization theory ; Theoretical analysis ; Vibration analysis</subject><ispartof>Proceedings of the Estonian Academy of Sciences, 2017-12, Vol.66 (4), p.354-362</ispartof><rights>COPYRIGHT 2017 Estonian Academy Publishers</rights><rights>Copyright Teaduste Akadeemia Kirjastus (Estonian Academy Publishers) 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,866,27933,27934</link.rule.ids></links><search><creatorcontrib>Majak, J</creatorcontrib><creatorcontrib>Kirs, M</creatorcontrib><creatorcontrib>Eerme, M</creatorcontrib><creatorcontrib>Tungel, E</creatorcontrib><creatorcontrib>Lepikult, T</creatorcontrib><title>Design optimization of graphene laminates for maximum fundamental frequency</title><title>Proceedings of the Estonian Academy of Sciences</title><description>Design optimization of nanostructures is a new challenging research area. The modelling of multilayer graphene sheets has a similar character as the modelling of composite laminates. However, the traditional laminate plate theories are revised in order to incorporate nonlocal elasticity. The main aim of the current study is to point out the crotchet features arising in the design optimization of graphene laminates based on the theoretical analysis performed and numerical results obtained. The study is focused on the improvement of the mechanical performance of graphene and nanostructures, particularly vibration properties of multilayer graphene laminates. Key words: graphene laminates, design optimization, genetic algorithms.</description><subject>Design</subject><subject>Design and construction</subject><subject>Design optimization</subject><subject>Elasticity</subject><subject>Euclidean space</subject><subject>Graphene</subject><subject>Laminates</subject><subject>Mathematical models</subject><subject>Mechanical properties</subject><subject>Mechanics</subject><subject>Methods</subject><subject>Nonlocal elasticity</subject><subject>Optimization theory</subject><subject>Theoretical analysis</subject><subject>Vibration analysis</subject><issn>1736-6046</issn><issn>1736-7530</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNptUU1LxDAQLaLg-nH1XPDcmjRpmhyX9RMXvOg5zKbJmqVJa9KC6683xcXTMoc3M7yZx-Nl2Q1GJcENuxtCr8oK4aakJeIn2QI3hBVNTdDpoWeIsvPsIsYdQoxUgiyy13sd7dbn_TBaZ39gtH0aTL4NMHxqr_MOnPUw6pibPuQOvq2bXG4m34LTfoQuN0F_Tdqr_VV2ZqCL-vqAl9nH48P76rlYvz29rJbrQiXNsTAcNqKtuGkYZUooJAxoQisDinNCCHBsNmiGRlWkog0TwKEmitctGMbJZXb79zc5TspxlLt-Cj5JSixqRkldJ9f_rC10Wlpv-jGAcjYquayxQA3lVCRWeYSVqtXOqt5rY9P-2IEKfYxBGzkE6yDsJUZyzkHOOcg5B0kl4uQXC9R7Ow</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Majak, J</creator><creator>Kirs, M</creator><creator>Eerme, M</creator><creator>Tungel, E</creator><creator>Lepikult, T</creator><general>Estonian Academy Publishers</general><general>Teaduste Akadeemia Kirjastus (Estonian Academy Publishers)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7X2</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>BYOGL</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0K</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope></search><sort><creationdate>20171201</creationdate><title>Design optimization of graphene laminates for maximum fundamental frequency</title><author>Majak, J ; Kirs, M ; Eerme, M ; Tungel, E ; Lepikult, T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c329t-f8ab9d28f7646c9c09fae342fac88333a81fb03a817c2324769a8a53c85daf683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Design</topic><topic>Design and construction</topic><topic>Design optimization</topic><topic>Elasticity</topic><topic>Euclidean space</topic><topic>Graphene</topic><topic>Laminates</topic><topic>Mathematical models</topic><topic>Mechanical properties</topic><topic>Mechanics</topic><topic>Methods</topic><topic>Nonlocal elasticity</topic><topic>Optimization theory</topic><topic>Theoretical analysis</topic><topic>Vibration analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Majak, J</creatorcontrib><creatorcontrib>Kirs, M</creatorcontrib><creatorcontrib>Eerme, M</creatorcontrib><creatorcontrib>Tungel, E</creatorcontrib><creatorcontrib>Lepikult, T</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Agricultural Science Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>East Europe, Central Europe Database</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Agricultural Science Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><jtitle>Proceedings of the Estonian Academy of Sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Majak, J</au><au>Kirs, M</au><au>Eerme, M</au><au>Tungel, E</au><au>Lepikult, T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design optimization of graphene laminates for maximum fundamental frequency</atitle><jtitle>Proceedings of the Estonian Academy of Sciences</jtitle><date>2017-12-01</date><risdate>2017</risdate><volume>66</volume><issue>4</issue><spage>354</spage><epage>362</epage><pages>354-362</pages><issn>1736-6046</issn><eissn>1736-7530</eissn><abstract>Design optimization of nanostructures is a new challenging research area. The modelling of multilayer graphene sheets has a similar character as the modelling of composite laminates. However, the traditional laminate plate theories are revised in order to incorporate nonlocal elasticity. The main aim of the current study is to point out the crotchet features arising in the design optimization of graphene laminates based on the theoretical analysis performed and numerical results obtained. The study is focused on the improvement of the mechanical performance of graphene and nanostructures, particularly vibration properties of multilayer graphene laminates. Key words: graphene laminates, design optimization, genetic algorithms.</abstract><cop>Tallinn</cop><pub>Estonian Academy Publishers</pub><doi>10.3176/proc.2017.4.08</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1736-6046
ispartof Proceedings of the Estonian Academy of Sciences, 2017-12, Vol.66 (4), p.354-362
issn 1736-6046
1736-7530
language eng
recordid cdi_proquest_journals_1956435575
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Free Full-Text Journals in Chemistry
subjects Design
Design and construction
Design optimization
Elasticity
Euclidean space
Graphene
Laminates
Mathematical models
Mechanical properties
Mechanics
Methods
Nonlocal elasticity
Optimization theory
Theoretical analysis
Vibration analysis
title Design optimization of graphene laminates for maximum fundamental frequency
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T12%3A25%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20optimization%20of%20graphene%20laminates%20for%20maximum%20fundamental%20frequency&rft.jtitle=Proceedings%20of%20the%20Estonian%20Academy%20of%20Sciences&rft.au=Majak,%20J&rft.date=2017-12-01&rft.volume=66&rft.issue=4&rft.spage=354&rft.epage=362&rft.pages=354-362&rft.issn=1736-6046&rft.eissn=1736-7530&rft_id=info:doi/10.3176/proc.2017.4.08&rft_dat=%3Cgale_proqu%3EA519074849%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1956435575&rft_id=info:pmid/&rft_galeid=A519074849&rfr_iscdi=true