General background conditions for K-bounce and adiabaticity

We study the background conditions for a bounce uniquely driven by a single scalar field model with a generalized kinetic term K ( X ), without any additional matter field. At the background level we impose the existence of two turning points where the derivative of the Hubble parameter H changes si...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The European physical journal. C, Particles and fields Particles and fields, 2017-03, Vol.77 (3), p.1-10, Article 147
1. Verfasser: Romano, Antonio Enea
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue 3
container_start_page 1
container_title The European physical journal. C, Particles and fields
container_volume 77
creator Romano, Antonio Enea
description We study the background conditions for a bounce uniquely driven by a single scalar field model with a generalized kinetic term K ( X ), without any additional matter field. At the background level we impose the existence of two turning points where the derivative of the Hubble parameter H changes sign and of a bounce point where the Hubble parameter vanishes. We find the conditions for K ( X ) and the potential which ensure the above requirements. We then give the examples of two models constructed according to these conditions. One is based on a quadratic K ( X ), and the other on a K ( X ) which is avoiding divergences of the second time derivative of the scalar field, which may otherwise occur. An appropriate choice of the initial conditions can lead to a sequence of consecutive bounces, or oscillations of H . In the region where these models have a constant potential they are adiabatic on any scale and because of this they may not conserve curvature perturbations on super-horizon scales. While at the perturbation level one class of models is free from ghosts and singularities of the classical equations of motion, in general gradient instabilities are present around the bounce time, because the sign of the squared speed of sound is opposite to the sign of the time derivative of H . We discuss how this kind of instabilities could be avoided by modifying the Lagrangian by introducing Galilean terms in order to prevent a negative squared speed of sound around the bounce.
doi_str_mv 10.1140/epjc/s10052-017-4698-8
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_1956240509</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A509061635</galeid><sourcerecordid>A509061635</sourcerecordid><originalsourceid>FETCH-LOGICAL-c518t-5c5b8aec3aa8da1e23bec82f85c856d4079628a374dd114d936b79f47e03a2223</originalsourceid><addsrcrecordid>eNp9kV1LwzAYhYMoOKd_QQpeedEtaT6a4tUYOocDwY_r8DZJS-bWzqQF9-_NqIi7kVwknDznTQ4HoWuCJ4QwPLW7tZ4GgjHPUkzylIlCpvIEjQijLBVRPv09M3aOLkJYY4wzhuUI3S1sYz1skhL0R-3bvjGJbhvjOtc2IalanzylZZS1TSDegXFQQue06_aX6KyCTbBXP_sYvT_cv80f09XzYjmfrVLNiexSrnkpwWoKIA0Qm9HSaplVkmvJhWE4L0QmgebMmBjIFFSUeVGx3GIKWZbRMboZ5u58-9nb0Kl12_smPqlIwUUMwnERqclA1bCxyjVV23nQcRm7dTGSrVzUZxHFggjKo-H2yBCZzn51NfQhqOXryzErBlb7NgRvK7Xzbgt-rwhWhxbUoQU1tKBiC-rQgpLRmA_GEA1Nbf2fv__v_AZvtIvW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1956240509</pqid></control><display><type>article</type><title>General background conditions for K-bounce and adiabaticity</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature OA Free Journals</source><source>Springer Nature - Complete Springer Journals</source><creator>Romano, Antonio Enea</creator><creatorcontrib>Romano, Antonio Enea</creatorcontrib><description>We study the background conditions for a bounce uniquely driven by a single scalar field model with a generalized kinetic term K ( X ), without any additional matter field. At the background level we impose the existence of two turning points where the derivative of the Hubble parameter H changes sign and of a bounce point where the Hubble parameter vanishes. We find the conditions for K ( X ) and the potential which ensure the above requirements. We then give the examples of two models constructed according to these conditions. One is based on a quadratic K ( X ), and the other on a K ( X ) which is avoiding divergences of the second time derivative of the scalar field, which may otherwise occur. An appropriate choice of the initial conditions can lead to a sequence of consecutive bounces, or oscillations of H . In the region where these models have a constant potential they are adiabatic on any scale and because of this they may not conserve curvature perturbations on super-horizon scales. While at the perturbation level one class of models is free from ghosts and singularities of the classical equations of motion, in general gradient instabilities are present around the bounce time, because the sign of the squared speed of sound is opposite to the sign of the time derivative of H . We discuss how this kind of instabilities could be avoided by modifying the Lagrangian by introducing Galilean terms in order to prevent a negative squared speed of sound around the bounce.</description><identifier>ISSN: 1434-6044</identifier><identifier>EISSN: 1434-6052</identifier><identifier>DOI: 10.1140/epjc/s10052-017-4698-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Adiabatic flow ; Analysis ; Astronomy ; Astrophysics and Cosmology ; Background radiation ; Curvature ; Elementary Particles ; Equations of motion ; Ghosts ; Hadrons ; Heavy Ions ; Initial conditions ; Measurement Science and Instrumentation ; Nuclear Energy ; Nuclear Physics ; Perturbation methods ; Physics ; Physics and Astronomy ; Quantum Field Theories ; Quantum Field Theory ; Regular Article - Theoretical Physics ; Singularities ; String Theory</subject><ispartof>The European physical journal. C, Particles and fields, 2017-03, Vol.77 (3), p.1-10, Article 147</ispartof><rights>The Author(s) 2017</rights><rights>COPYRIGHT 2017 Springer</rights><rights>The European Physical Journal C is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c518t-5c5b8aec3aa8da1e23bec82f85c856d4079628a374dd114d936b79f47e03a2223</citedby><cites>FETCH-LOGICAL-c518t-5c5b8aec3aa8da1e23bec82f85c856d4079628a374dd114d936b79f47e03a2223</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epjc/s10052-017-4698-8$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1140/epjc/s10052-017-4698-8$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,861,27905,27906,41101,41469,42170,42538,51300,51557</link.rule.ids></links><search><creatorcontrib>Romano, Antonio Enea</creatorcontrib><title>General background conditions for K-bounce and adiabaticity</title><title>The European physical journal. C, Particles and fields</title><addtitle>Eur. Phys. J. C</addtitle><description>We study the background conditions for a bounce uniquely driven by a single scalar field model with a generalized kinetic term K ( X ), without any additional matter field. At the background level we impose the existence of two turning points where the derivative of the Hubble parameter H changes sign and of a bounce point where the Hubble parameter vanishes. We find the conditions for K ( X ) and the potential which ensure the above requirements. We then give the examples of two models constructed according to these conditions. One is based on a quadratic K ( X ), and the other on a K ( X ) which is avoiding divergences of the second time derivative of the scalar field, which may otherwise occur. An appropriate choice of the initial conditions can lead to a sequence of consecutive bounces, or oscillations of H . In the region where these models have a constant potential they are adiabatic on any scale and because of this they may not conserve curvature perturbations on super-horizon scales. While at the perturbation level one class of models is free from ghosts and singularities of the classical equations of motion, in general gradient instabilities are present around the bounce time, because the sign of the squared speed of sound is opposite to the sign of the time derivative of H . We discuss how this kind of instabilities could be avoided by modifying the Lagrangian by introducing Galilean terms in order to prevent a negative squared speed of sound around the bounce.</description><subject>Adiabatic flow</subject><subject>Analysis</subject><subject>Astronomy</subject><subject>Astrophysics and Cosmology</subject><subject>Background radiation</subject><subject>Curvature</subject><subject>Elementary Particles</subject><subject>Equations of motion</subject><subject>Ghosts</subject><subject>Hadrons</subject><subject>Heavy Ions</subject><subject>Initial conditions</subject><subject>Measurement Science and Instrumentation</subject><subject>Nuclear Energy</subject><subject>Nuclear Physics</subject><subject>Perturbation methods</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Field Theories</subject><subject>Quantum Field Theory</subject><subject>Regular Article - Theoretical Physics</subject><subject>Singularities</subject><subject>String Theory</subject><issn>1434-6044</issn><issn>1434-6052</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kV1LwzAYhYMoOKd_QQpeedEtaT6a4tUYOocDwY_r8DZJS-bWzqQF9-_NqIi7kVwknDznTQ4HoWuCJ4QwPLW7tZ4GgjHPUkzylIlCpvIEjQijLBVRPv09M3aOLkJYY4wzhuUI3S1sYz1skhL0R-3bvjGJbhvjOtc2IalanzylZZS1TSDegXFQQue06_aX6KyCTbBXP_sYvT_cv80f09XzYjmfrVLNiexSrnkpwWoKIA0Qm9HSaplVkmvJhWE4L0QmgebMmBjIFFSUeVGx3GIKWZbRMboZ5u58-9nb0Kl12_smPqlIwUUMwnERqclA1bCxyjVV23nQcRm7dTGSrVzUZxHFggjKo-H2yBCZzn51NfQhqOXryzErBlb7NgRvK7Xzbgt-rwhWhxbUoQU1tKBiC-rQgpLRmA_GEA1Nbf2fv__v_AZvtIvW</recordid><startdate>20170301</startdate><enddate>20170301</enddate><creator>Romano, Antonio Enea</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7U5</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20170301</creationdate><title>General background conditions for K-bounce and adiabaticity</title><author>Romano, Antonio Enea</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c518t-5c5b8aec3aa8da1e23bec82f85c856d4079628a374dd114d936b79f47e03a2223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adiabatic flow</topic><topic>Analysis</topic><topic>Astronomy</topic><topic>Astrophysics and Cosmology</topic><topic>Background radiation</topic><topic>Curvature</topic><topic>Elementary Particles</topic><topic>Equations of motion</topic><topic>Ghosts</topic><topic>Hadrons</topic><topic>Heavy Ions</topic><topic>Initial conditions</topic><topic>Measurement Science and Instrumentation</topic><topic>Nuclear Energy</topic><topic>Nuclear Physics</topic><topic>Perturbation methods</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Field Theories</topic><topic>Quantum Field Theory</topic><topic>Regular Article - Theoretical Physics</topic><topic>Singularities</topic><topic>String Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Romano, Antonio Enea</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>The European physical journal. C, Particles and fields</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Romano, Antonio Enea</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>General background conditions for K-bounce and adiabaticity</atitle><jtitle>The European physical journal. C, Particles and fields</jtitle><stitle>Eur. Phys. J. C</stitle><date>2017-03-01</date><risdate>2017</risdate><volume>77</volume><issue>3</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><artnum>147</artnum><issn>1434-6044</issn><eissn>1434-6052</eissn><abstract>We study the background conditions for a bounce uniquely driven by a single scalar field model with a generalized kinetic term K ( X ), without any additional matter field. At the background level we impose the existence of two turning points where the derivative of the Hubble parameter H changes sign and of a bounce point where the Hubble parameter vanishes. We find the conditions for K ( X ) and the potential which ensure the above requirements. We then give the examples of two models constructed according to these conditions. One is based on a quadratic K ( X ), and the other on a K ( X ) which is avoiding divergences of the second time derivative of the scalar field, which may otherwise occur. An appropriate choice of the initial conditions can lead to a sequence of consecutive bounces, or oscillations of H . In the region where these models have a constant potential they are adiabatic on any scale and because of this they may not conserve curvature perturbations on super-horizon scales. While at the perturbation level one class of models is free from ghosts and singularities of the classical equations of motion, in general gradient instabilities are present around the bounce time, because the sign of the squared speed of sound is opposite to the sign of the time derivative of H . We discuss how this kind of instabilities could be avoided by modifying the Lagrangian by introducing Galilean terms in order to prevent a negative squared speed of sound around the bounce.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjc/s10052-017-4698-8</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1434-6044
ispartof The European physical journal. C, Particles and fields, 2017-03, Vol.77 (3), p.1-10, Article 147
issn 1434-6044
1434-6052
language eng
recordid cdi_proquest_journals_1956240509
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature OA Free Journals; Springer Nature - Complete Springer Journals
subjects Adiabatic flow
Analysis
Astronomy
Astrophysics and Cosmology
Background radiation
Curvature
Elementary Particles
Equations of motion
Ghosts
Hadrons
Heavy Ions
Initial conditions
Measurement Science and Instrumentation
Nuclear Energy
Nuclear Physics
Perturbation methods
Physics
Physics and Astronomy
Quantum Field Theories
Quantum Field Theory
Regular Article - Theoretical Physics
Singularities
String Theory
title General background conditions for K-bounce and adiabaticity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T11%3A40%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=General%20background%20conditions%20for%20K-bounce%20and%20adiabaticity&rft.jtitle=The%20European%20physical%20journal.%20C,%20Particles%20and%20fields&rft.au=Romano,%20Antonio%20Enea&rft.date=2017-03-01&rft.volume=77&rft.issue=3&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.artnum=147&rft.issn=1434-6044&rft.eissn=1434-6052&rft_id=info:doi/10.1140/epjc/s10052-017-4698-8&rft_dat=%3Cgale_proqu%3EA509061635%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1956240509&rft_id=info:pmid/&rft_galeid=A509061635&rfr_iscdi=true