Measured Horizontal Temperature Gradients Constrain Heat Transfer Mechanisms in Greenland Ice

Ice in the ablation zone of the Greenland ice sheet is known to contain vertical temperature gradients that arise from conduction at the boundaries, the addition of strain and latent heat, and advective heat transport. A three‐dimensional array of temperature measurements in a grid of boreholes reve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geophysical research letters 2017-10, Vol.44 (19), p.9778-9785
Hauptverfasser: Hills, Benjamin H., Harper, Joel T., Humphrey, Neil F., Meierbachtol, Toby W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9785
container_issue 19
container_start_page 9778
container_title Geophysical research letters
container_volume 44
creator Hills, Benjamin H.
Harper, Joel T.
Humphrey, Neil F.
Meierbachtol, Toby W.
description Ice in the ablation zone of the Greenland ice sheet is known to contain vertical temperature gradients that arise from conduction at the boundaries, the addition of strain and latent heat, and advective heat transport. A three‐dimensional array of temperature measurements in a grid of boreholes reveals horizontal ice temperature gradients that challenge the present conceptualization of heat transfer. We measure two distinct types of temperature variability in the horizontal direction, one impacting a confined region where ice temperatures span a range of 5°C, and another with temperatures consistently varying by approximately 2°C across the entire 3‐D block. We suggest the first demonstrates the localized and limited nature of latent heat input, and the second demonstrates that vertical heat advection outpaces diffusion. These findings imply that ice flow is highly variable over sub‐ice‐thickness length scales, which in turn generates contrasts in ice temperature that may impact ice deformation and fracturing. Key Points The 3‐D thermal structure of an ~8 × 107 m3 block of ice in the Greenland ice sheet ablation zone was measured with over 300 sensors Unexpected horizontal temperature gradients are present across length scales below one ice thickness and through the full ice column Slow rates of diffusion relative to advective heat transfer can generate a heterogeneous temperature structure similar to what we observe
doi_str_mv 10.1002/2017GL074917
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1956125712</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1956125712</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4108-2074d3d7613c128f27d4652fec4b3c1cfaf62e3a1a1b740b318d3b0812c32f813</originalsourceid><addsrcrecordid>eNp9kEFLw0AQhRdRsFZv_oAFr0ZndjfZ9ChF00KKIPUoYbOZYEq6qbspUn-9K_XgydMMbz7ePB5j1wh3CCDuBaAuStBqhvqETXCmVJID6FM2AZjFXejsnF2EsAEACRIn7G1FJuw9NXwx-O5rcKPp-Zq2O_JmjDovvGk6cmPg88GF0ZvO8QWZka-9caElz1dk343rwjbweCs8keuNa_jS0iU7a00f6Op3Ttnr0-N6vkjK52I5fygTqxDyRMTIjWx0htKiyFuhG5WloiWr6qjY1rSZIGnQYK0V1BLzRtaQo7BStDnKKbs5-u788LGnMFabYe9dfFnhLM1QpBpFpG6PlPVDCJ7aaue7rfGHCqH6KbD6W2DExRH_7Ho6_MtWxUuZZirN5Tdv4nD1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1956125712</pqid></control><display><type>article</type><title>Measured Horizontal Temperature Gradients Constrain Heat Transfer Mechanisms in Greenland Ice</title><source>Wiley Journals</source><source>Wiley Free Content</source><source>Wiley-Blackwell AGU Digital Library</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Hills, Benjamin H. ; Harper, Joel T. ; Humphrey, Neil F. ; Meierbachtol, Toby W.</creator><creatorcontrib>Hills, Benjamin H. ; Harper, Joel T. ; Humphrey, Neil F. ; Meierbachtol, Toby W.</creatorcontrib><description>Ice in the ablation zone of the Greenland ice sheet is known to contain vertical temperature gradients that arise from conduction at the boundaries, the addition of strain and latent heat, and advective heat transport. A three‐dimensional array of temperature measurements in a grid of boreholes reveals horizontal ice temperature gradients that challenge the present conceptualization of heat transfer. We measure two distinct types of temperature variability in the horizontal direction, one impacting a confined region where ice temperatures span a range of 5°C, and another with temperatures consistently varying by approximately 2°C across the entire 3‐D block. We suggest the first demonstrates the localized and limited nature of latent heat input, and the second demonstrates that vertical heat advection outpaces diffusion. These findings imply that ice flow is highly variable over sub‐ice‐thickness length scales, which in turn generates contrasts in ice temperature that may impact ice deformation and fracturing. Key Points The 3‐D thermal structure of an ~8 × 107 m3 block of ice in the Greenland ice sheet ablation zone was measured with over 300 sensors Unexpected horizontal temperature gradients are present across length scales below one ice thickness and through the full ice column Slow rates of diffusion relative to advective heat transfer can generate a heterogeneous temperature structure similar to what we observe</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1002/2017GL074917</identifier><language>eng</language><publisher>Washington: John Wiley &amp; Sons, Inc</publisher><subject>Ablation ; Advection ; Boreholes ; Conduction ; Conduction heating ; Deformation ; Deformation mechanisms ; Dye dispersion ; Glaciation ; Greenland ice sheet ; Heat ; Heat transfer ; Heat transport ; Horizontal orientation ; Ice ; Ice cover ; Ice sheets ; ice temperature ; Ice temperatures ; Ice thickness ; Latent heat ; Temperature ; Temperature effects ; Temperature gradients ; Temperature measurement ; Temperature variability</subject><ispartof>Geophysical research letters, 2017-10, Vol.44 (19), p.9778-9785</ispartof><rights>2017. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4108-2074d3d7613c128f27d4652fec4b3c1cfaf62e3a1a1b740b318d3b0812c32f813</citedby><cites>FETCH-LOGICAL-c4108-2074d3d7613c128f27d4652fec4b3c1cfaf62e3a1a1b740b318d3b0812c32f813</cites><orcidid>0000-0003-4490-7416 ; 0000-0002-8487-7920 ; 0000-0002-2151-8509 ; 0000-0002-5175-2080</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2017GL074917$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2017GL074917$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,11514,27924,27925,45574,45575,46409,46468,46833,46892</link.rule.ids></links><search><creatorcontrib>Hills, Benjamin H.</creatorcontrib><creatorcontrib>Harper, Joel T.</creatorcontrib><creatorcontrib>Humphrey, Neil F.</creatorcontrib><creatorcontrib>Meierbachtol, Toby W.</creatorcontrib><title>Measured Horizontal Temperature Gradients Constrain Heat Transfer Mechanisms in Greenland Ice</title><title>Geophysical research letters</title><description>Ice in the ablation zone of the Greenland ice sheet is known to contain vertical temperature gradients that arise from conduction at the boundaries, the addition of strain and latent heat, and advective heat transport. A three‐dimensional array of temperature measurements in a grid of boreholes reveals horizontal ice temperature gradients that challenge the present conceptualization of heat transfer. We measure two distinct types of temperature variability in the horizontal direction, one impacting a confined region where ice temperatures span a range of 5°C, and another with temperatures consistently varying by approximately 2°C across the entire 3‐D block. We suggest the first demonstrates the localized and limited nature of latent heat input, and the second demonstrates that vertical heat advection outpaces diffusion. These findings imply that ice flow is highly variable over sub‐ice‐thickness length scales, which in turn generates contrasts in ice temperature that may impact ice deformation and fracturing. Key Points The 3‐D thermal structure of an ~8 × 107 m3 block of ice in the Greenland ice sheet ablation zone was measured with over 300 sensors Unexpected horizontal temperature gradients are present across length scales below one ice thickness and through the full ice column Slow rates of diffusion relative to advective heat transfer can generate a heterogeneous temperature structure similar to what we observe</description><subject>Ablation</subject><subject>Advection</subject><subject>Boreholes</subject><subject>Conduction</subject><subject>Conduction heating</subject><subject>Deformation</subject><subject>Deformation mechanisms</subject><subject>Dye dispersion</subject><subject>Glaciation</subject><subject>Greenland ice sheet</subject><subject>Heat</subject><subject>Heat transfer</subject><subject>Heat transport</subject><subject>Horizontal orientation</subject><subject>Ice</subject><subject>Ice cover</subject><subject>Ice sheets</subject><subject>ice temperature</subject><subject>Ice temperatures</subject><subject>Ice thickness</subject><subject>Latent heat</subject><subject>Temperature</subject><subject>Temperature effects</subject><subject>Temperature gradients</subject><subject>Temperature measurement</subject><subject>Temperature variability</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLw0AQhRdRsFZv_oAFr0ZndjfZ9ChF00KKIPUoYbOZYEq6qbspUn-9K_XgydMMbz7ePB5j1wh3CCDuBaAuStBqhvqETXCmVJID6FM2AZjFXejsnF2EsAEACRIn7G1FJuw9NXwx-O5rcKPp-Zq2O_JmjDovvGk6cmPg88GF0ZvO8QWZka-9caElz1dk343rwjbweCs8keuNa_jS0iU7a00f6Op3Ttnr0-N6vkjK52I5fygTqxDyRMTIjWx0htKiyFuhG5WloiWr6qjY1rSZIGnQYK0V1BLzRtaQo7BStDnKKbs5-u788LGnMFabYe9dfFnhLM1QpBpFpG6PlPVDCJ7aaue7rfGHCqH6KbD6W2DExRH_7Ho6_MtWxUuZZirN5Tdv4nD1</recordid><startdate>20171016</startdate><enddate>20171016</enddate><creator>Hills, Benjamin H.</creator><creator>Harper, Joel T.</creator><creator>Humphrey, Neil F.</creator><creator>Meierbachtol, Toby W.</creator><general>John Wiley &amp; Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4490-7416</orcidid><orcidid>https://orcid.org/0000-0002-8487-7920</orcidid><orcidid>https://orcid.org/0000-0002-2151-8509</orcidid><orcidid>https://orcid.org/0000-0002-5175-2080</orcidid></search><sort><creationdate>20171016</creationdate><title>Measured Horizontal Temperature Gradients Constrain Heat Transfer Mechanisms in Greenland Ice</title><author>Hills, Benjamin H. ; Harper, Joel T. ; Humphrey, Neil F. ; Meierbachtol, Toby W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4108-2074d3d7613c128f27d4652fec4b3c1cfaf62e3a1a1b740b318d3b0812c32f813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Ablation</topic><topic>Advection</topic><topic>Boreholes</topic><topic>Conduction</topic><topic>Conduction heating</topic><topic>Deformation</topic><topic>Deformation mechanisms</topic><topic>Dye dispersion</topic><topic>Glaciation</topic><topic>Greenland ice sheet</topic><topic>Heat</topic><topic>Heat transfer</topic><topic>Heat transport</topic><topic>Horizontal orientation</topic><topic>Ice</topic><topic>Ice cover</topic><topic>Ice sheets</topic><topic>ice temperature</topic><topic>Ice temperatures</topic><topic>Ice thickness</topic><topic>Latent heat</topic><topic>Temperature</topic><topic>Temperature effects</topic><topic>Temperature gradients</topic><topic>Temperature measurement</topic><topic>Temperature variability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hills, Benjamin H.</creatorcontrib><creatorcontrib>Harper, Joel T.</creatorcontrib><creatorcontrib>Humphrey, Neil F.</creatorcontrib><creatorcontrib>Meierbachtol, Toby W.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hills, Benjamin H.</au><au>Harper, Joel T.</au><au>Humphrey, Neil F.</au><au>Meierbachtol, Toby W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Measured Horizontal Temperature Gradients Constrain Heat Transfer Mechanisms in Greenland Ice</atitle><jtitle>Geophysical research letters</jtitle><date>2017-10-16</date><risdate>2017</risdate><volume>44</volume><issue>19</issue><spage>9778</spage><epage>9785</epage><pages>9778-9785</pages><issn>0094-8276</issn><eissn>1944-8007</eissn><abstract>Ice in the ablation zone of the Greenland ice sheet is known to contain vertical temperature gradients that arise from conduction at the boundaries, the addition of strain and latent heat, and advective heat transport. A three‐dimensional array of temperature measurements in a grid of boreholes reveals horizontal ice temperature gradients that challenge the present conceptualization of heat transfer. We measure two distinct types of temperature variability in the horizontal direction, one impacting a confined region where ice temperatures span a range of 5°C, and another with temperatures consistently varying by approximately 2°C across the entire 3‐D block. We suggest the first demonstrates the localized and limited nature of latent heat input, and the second demonstrates that vertical heat advection outpaces diffusion. These findings imply that ice flow is highly variable over sub‐ice‐thickness length scales, which in turn generates contrasts in ice temperature that may impact ice deformation and fracturing. Key Points The 3‐D thermal structure of an ~8 × 107 m3 block of ice in the Greenland ice sheet ablation zone was measured with over 300 sensors Unexpected horizontal temperature gradients are present across length scales below one ice thickness and through the full ice column Slow rates of diffusion relative to advective heat transfer can generate a heterogeneous temperature structure similar to what we observe</abstract><cop>Washington</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/2017GL074917</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-4490-7416</orcidid><orcidid>https://orcid.org/0000-0002-8487-7920</orcidid><orcidid>https://orcid.org/0000-0002-2151-8509</orcidid><orcidid>https://orcid.org/0000-0002-5175-2080</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-8276
ispartof Geophysical research letters, 2017-10, Vol.44 (19), p.9778-9785
issn 0094-8276
1944-8007
language eng
recordid cdi_proquest_journals_1956125712
source Wiley Journals; Wiley Free Content; Wiley-Blackwell AGU Digital Library; EZB-FREE-00999 freely available EZB journals
subjects Ablation
Advection
Boreholes
Conduction
Conduction heating
Deformation
Deformation mechanisms
Dye dispersion
Glaciation
Greenland ice sheet
Heat
Heat transfer
Heat transport
Horizontal orientation
Ice
Ice cover
Ice sheets
ice temperature
Ice temperatures
Ice thickness
Latent heat
Temperature
Temperature effects
Temperature gradients
Temperature measurement
Temperature variability
title Measured Horizontal Temperature Gradients Constrain Heat Transfer Mechanisms in Greenland Ice
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T10%3A23%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Measured%20Horizontal%20Temperature%20Gradients%20Constrain%20Heat%20Transfer%20Mechanisms%20in%20Greenland%20Ice&rft.jtitle=Geophysical%20research%20letters&rft.au=Hills,%20Benjamin%20H.&rft.date=2017-10-16&rft.volume=44&rft.issue=19&rft.spage=9778&rft.epage=9785&rft.pages=9778-9785&rft.issn=0094-8276&rft.eissn=1944-8007&rft_id=info:doi/10.1002/2017GL074917&rft_dat=%3Cproquest_cross%3E1956125712%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1956125712&rft_id=info:pmid/&rfr_iscdi=true