Large-scale high-temperature solar energy storage using natural minerals
The present work is focused on thermochemical energy storage (TCES) in Concentrated Solar Power (CSP) plants by means of the Calcium-Looping (CaL) process using cheap, abundant and non-toxic natural carbonate minerals. CaL conditions for CSP storage involve calcination of CaCO3 in the solar receiver...
Gespeichert in:
Veröffentlicht in: | Solar energy materials and solar cells 2017-08, Vol.168, p.14-21 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 21 |
---|---|
container_issue | |
container_start_page | 14 |
container_title | Solar energy materials and solar cells |
container_volume | 168 |
creator | Benitez-Guerrero, Monica Sarrion, Beatriz Perejon, Antonio Sanchez-Jimenez, Pedro E. Perez-Maqueda, Luis A. Manuel Valverde, Jose |
description | The present work is focused on thermochemical energy storage (TCES) in Concentrated Solar Power (CSP) plants by means of the Calcium-Looping (CaL) process using cheap, abundant and non-toxic natural carbonate minerals. CaL conditions for CSP storage involve calcination of CaCO3 in the solar receiver at relatively low temperature whereas carbonation of CaO is carried out at high temperature and high CO2 concentration to use the heat of reaction for power production by means of a CO2 closed power cycle. Under these conditions, large CaO particles derived from limestone to be used in industrial processes are rapidly deactivated due to pore-plugging, which limits the extent of the reaction. This is favored by the relatively small pores of the CaO skeleton generated by low temperature calcination, the large thickness of the CaCO3 layer built upon the CaO surface and the very fast carbonation kinetics. On the other hand, at CaL conditions for CSP storage does not limit carbonation of CaO derived from dolomite (dolime). Dolime is shown to exhibit a high multicycle conversion regardless of particle size, which is explained by the presence of inert MgO grains that allow the reacting gas to percolate inside the porous particles.
Thermochemical Energy storage of CSP using the Calcium-Looping process [Display omitted]
•CSP can be stored by means of the Calcium-Looping process in thermochemical form.•The CaL process uses cheap, abundant and non-toxic natural calcium carbonate minerals.•These materials may exhibit a high multicycle activity at CaL conditions that maximize the global plant efficiency.•Natural limestone performance is limited by particle size at practical conditions due to pore plugging.•Pore plugging does not pose a significant limitation to the performance of natural dolomite. |
doi_str_mv | 10.1016/j.solmat.2017.04.013 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1956027264</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927024817301721</els_id><sourcerecordid>1956027264</sourcerecordid><originalsourceid>FETCH-LOGICAL-c483t-6ca86dc340077447e42bda24e4cae3543cc61fbd3d0a61e1283653a22c6b458b3</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoOI6-gYuC69aTS9N2I8igjjDgRtchTc90UnoZk1SYtzdDXbv6F__lcD5C7ilkFKh87DI_9YMOGQNaZCAyoPyCrGhZVCnnVXlJVlCxIgUmymty430HAExysSLbnXYtpt7oHpODbQ9pwOGITofZYRJntUtwRNeeEh8mp1tMZm_HNhnPCd0ng42u7v0tudpHwbs_XZOv15fPzTbdfby9b553qRElD6k0upSN4QKgKIQoULC60UygMBp5Lrgxku7rhjegJUXKSi5zrhkzshZ5WfM1eVh2j276ntEH1U2zG-NJRatcAiuYFDEllpRxk_cO9-ro7KDdSVFQZ2aqUwszdWamQKjILNaelhrGD34sOuWNxdFgYx2aoJrJ_j_wC203d1U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1956027264</pqid></control><display><type>article</type><title>Large-scale high-temperature solar energy storage using natural minerals</title><source>Elsevier ScienceDirect Journals</source><creator>Benitez-Guerrero, Monica ; Sarrion, Beatriz ; Perejon, Antonio ; Sanchez-Jimenez, Pedro E. ; Perez-Maqueda, Luis A. ; Manuel Valverde, Jose</creator><creatorcontrib>Benitez-Guerrero, Monica ; Sarrion, Beatriz ; Perejon, Antonio ; Sanchez-Jimenez, Pedro E. ; Perez-Maqueda, Luis A. ; Manuel Valverde, Jose</creatorcontrib><description>The present work is focused on thermochemical energy storage (TCES) in Concentrated Solar Power (CSP) plants by means of the Calcium-Looping (CaL) process using cheap, abundant and non-toxic natural carbonate minerals. CaL conditions for CSP storage involve calcination of CaCO3 in the solar receiver at relatively low temperature whereas carbonation of CaO is carried out at high temperature and high CO2 concentration to use the heat of reaction for power production by means of a CO2 closed power cycle. Under these conditions, large CaO particles derived from limestone to be used in industrial processes are rapidly deactivated due to pore-plugging, which limits the extent of the reaction. This is favored by the relatively small pores of the CaO skeleton generated by low temperature calcination, the large thickness of the CaCO3 layer built upon the CaO surface and the very fast carbonation kinetics. On the other hand, at CaL conditions for CSP storage does not limit carbonation of CaO derived from dolomite (dolime). Dolime is shown to exhibit a high multicycle conversion regardless of particle size, which is explained by the presence of inert MgO grains that allow the reacting gas to percolate inside the porous particles.
Thermochemical Energy storage of CSP using the Calcium-Looping process [Display omitted]
•CSP can be stored by means of the Calcium-Looping process in thermochemical form.•The CaL process uses cheap, abundant and non-toxic natural calcium carbonate minerals.•These materials may exhibit a high multicycle activity at CaL conditions that maximize the global plant efficiency.•Natural limestone performance is limited by particle size at practical conditions due to pore plugging.•Pore plugging does not pose a significant limitation to the performance of natural dolomite.</description><identifier>ISSN: 0927-0248</identifier><identifier>EISSN: 1879-3398</identifier><identifier>DOI: 10.1016/j.solmat.2017.04.013</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>CaL-CO2 capture ; CaL-CSP storage ; Calcium ; Calcium carbonate ; Carbon dioxide ; Carbonation ; Concentrated Solar Power ; Deactivation ; Dolomite ; Energy consumption ; Energy storage ; Heat ; Heat of reaction ; High temperature ; Kinetics ; Limestone ; Low temperature ; Minerals ; Multicycle conversion ; Natural carbonates ; Particle size ; Particulates ; Photovoltaic cells ; Power plants ; Reaction kinetics ; Roasting ; Solar energy ; Solar power ; Temperature effects ; Thickness</subject><ispartof>Solar energy materials and solar cells, 2017-08, Vol.168, p.14-21</ispartof><rights>2017</rights><rights>Copyright Elsevier BV Aug 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c483t-6ca86dc340077447e42bda24e4cae3543cc61fbd3d0a61e1283653a22c6b458b3</citedby><cites>FETCH-LOGICAL-c483t-6ca86dc340077447e42bda24e4cae3543cc61fbd3d0a61e1283653a22c6b458b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0927024817301721$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Benitez-Guerrero, Monica</creatorcontrib><creatorcontrib>Sarrion, Beatriz</creatorcontrib><creatorcontrib>Perejon, Antonio</creatorcontrib><creatorcontrib>Sanchez-Jimenez, Pedro E.</creatorcontrib><creatorcontrib>Perez-Maqueda, Luis A.</creatorcontrib><creatorcontrib>Manuel Valverde, Jose</creatorcontrib><title>Large-scale high-temperature solar energy storage using natural minerals</title><title>Solar energy materials and solar cells</title><description>The present work is focused on thermochemical energy storage (TCES) in Concentrated Solar Power (CSP) plants by means of the Calcium-Looping (CaL) process using cheap, abundant and non-toxic natural carbonate minerals. CaL conditions for CSP storage involve calcination of CaCO3 in the solar receiver at relatively low temperature whereas carbonation of CaO is carried out at high temperature and high CO2 concentration to use the heat of reaction for power production by means of a CO2 closed power cycle. Under these conditions, large CaO particles derived from limestone to be used in industrial processes are rapidly deactivated due to pore-plugging, which limits the extent of the reaction. This is favored by the relatively small pores of the CaO skeleton generated by low temperature calcination, the large thickness of the CaCO3 layer built upon the CaO surface and the very fast carbonation kinetics. On the other hand, at CaL conditions for CSP storage does not limit carbonation of CaO derived from dolomite (dolime). Dolime is shown to exhibit a high multicycle conversion regardless of particle size, which is explained by the presence of inert MgO grains that allow the reacting gas to percolate inside the porous particles.
Thermochemical Energy storage of CSP using the Calcium-Looping process [Display omitted]
•CSP can be stored by means of the Calcium-Looping process in thermochemical form.•The CaL process uses cheap, abundant and non-toxic natural calcium carbonate minerals.•These materials may exhibit a high multicycle activity at CaL conditions that maximize the global plant efficiency.•Natural limestone performance is limited by particle size at practical conditions due to pore plugging.•Pore plugging does not pose a significant limitation to the performance of natural dolomite.</description><subject>CaL-CO2 capture</subject><subject>CaL-CSP storage</subject><subject>Calcium</subject><subject>Calcium carbonate</subject><subject>Carbon dioxide</subject><subject>Carbonation</subject><subject>Concentrated Solar Power</subject><subject>Deactivation</subject><subject>Dolomite</subject><subject>Energy consumption</subject><subject>Energy storage</subject><subject>Heat</subject><subject>Heat of reaction</subject><subject>High temperature</subject><subject>Kinetics</subject><subject>Limestone</subject><subject>Low temperature</subject><subject>Minerals</subject><subject>Multicycle conversion</subject><subject>Natural carbonates</subject><subject>Particle size</subject><subject>Particulates</subject><subject>Photovoltaic cells</subject><subject>Power plants</subject><subject>Reaction kinetics</subject><subject>Roasting</subject><subject>Solar energy</subject><subject>Solar power</subject><subject>Temperature effects</subject><subject>Thickness</subject><issn>0927-0248</issn><issn>1879-3398</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxDAUhoMoOI6-gYuC69aTS9N2I8igjjDgRtchTc90UnoZk1SYtzdDXbv6F__lcD5C7ilkFKh87DI_9YMOGQNaZCAyoPyCrGhZVCnnVXlJVlCxIgUmymty430HAExysSLbnXYtpt7oHpODbQ9pwOGITofZYRJntUtwRNeeEh8mp1tMZm_HNhnPCd0ng42u7v0tudpHwbs_XZOv15fPzTbdfby9b553qRElD6k0upSN4QKgKIQoULC60UygMBp5Lrgxku7rhjegJUXKSi5zrhkzshZ5WfM1eVh2j276ntEH1U2zG-NJRatcAiuYFDEllpRxk_cO9-ro7KDdSVFQZ2aqUwszdWamQKjILNaelhrGD34sOuWNxdFgYx2aoJrJ_j_wC203d1U</recordid><startdate>20170801</startdate><enddate>20170801</enddate><creator>Benitez-Guerrero, Monica</creator><creator>Sarrion, Beatriz</creator><creator>Perejon, Antonio</creator><creator>Sanchez-Jimenez, Pedro E.</creator><creator>Perez-Maqueda, Luis A.</creator><creator>Manuel Valverde, Jose</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20170801</creationdate><title>Large-scale high-temperature solar energy storage using natural minerals</title><author>Benitez-Guerrero, Monica ; Sarrion, Beatriz ; Perejon, Antonio ; Sanchez-Jimenez, Pedro E. ; Perez-Maqueda, Luis A. ; Manuel Valverde, Jose</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c483t-6ca86dc340077447e42bda24e4cae3543cc61fbd3d0a61e1283653a22c6b458b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>CaL-CO2 capture</topic><topic>CaL-CSP storage</topic><topic>Calcium</topic><topic>Calcium carbonate</topic><topic>Carbon dioxide</topic><topic>Carbonation</topic><topic>Concentrated Solar Power</topic><topic>Deactivation</topic><topic>Dolomite</topic><topic>Energy consumption</topic><topic>Energy storage</topic><topic>Heat</topic><topic>Heat of reaction</topic><topic>High temperature</topic><topic>Kinetics</topic><topic>Limestone</topic><topic>Low temperature</topic><topic>Minerals</topic><topic>Multicycle conversion</topic><topic>Natural carbonates</topic><topic>Particle size</topic><topic>Particulates</topic><topic>Photovoltaic cells</topic><topic>Power plants</topic><topic>Reaction kinetics</topic><topic>Roasting</topic><topic>Solar energy</topic><topic>Solar power</topic><topic>Temperature effects</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Benitez-Guerrero, Monica</creatorcontrib><creatorcontrib>Sarrion, Beatriz</creatorcontrib><creatorcontrib>Perejon, Antonio</creatorcontrib><creatorcontrib>Sanchez-Jimenez, Pedro E.</creatorcontrib><creatorcontrib>Perez-Maqueda, Luis A.</creatorcontrib><creatorcontrib>Manuel Valverde, Jose</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Solar energy materials and solar cells</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Benitez-Guerrero, Monica</au><au>Sarrion, Beatriz</au><au>Perejon, Antonio</au><au>Sanchez-Jimenez, Pedro E.</au><au>Perez-Maqueda, Luis A.</au><au>Manuel Valverde, Jose</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large-scale high-temperature solar energy storage using natural minerals</atitle><jtitle>Solar energy materials and solar cells</jtitle><date>2017-08-01</date><risdate>2017</risdate><volume>168</volume><spage>14</spage><epage>21</epage><pages>14-21</pages><issn>0927-0248</issn><eissn>1879-3398</eissn><abstract>The present work is focused on thermochemical energy storage (TCES) in Concentrated Solar Power (CSP) plants by means of the Calcium-Looping (CaL) process using cheap, abundant and non-toxic natural carbonate minerals. CaL conditions for CSP storage involve calcination of CaCO3 in the solar receiver at relatively low temperature whereas carbonation of CaO is carried out at high temperature and high CO2 concentration to use the heat of reaction for power production by means of a CO2 closed power cycle. Under these conditions, large CaO particles derived from limestone to be used in industrial processes are rapidly deactivated due to pore-plugging, which limits the extent of the reaction. This is favored by the relatively small pores of the CaO skeleton generated by low temperature calcination, the large thickness of the CaCO3 layer built upon the CaO surface and the very fast carbonation kinetics. On the other hand, at CaL conditions for CSP storage does not limit carbonation of CaO derived from dolomite (dolime). Dolime is shown to exhibit a high multicycle conversion regardless of particle size, which is explained by the presence of inert MgO grains that allow the reacting gas to percolate inside the porous particles.
Thermochemical Energy storage of CSP using the Calcium-Looping process [Display omitted]
•CSP can be stored by means of the Calcium-Looping process in thermochemical form.•The CaL process uses cheap, abundant and non-toxic natural calcium carbonate minerals.•These materials may exhibit a high multicycle activity at CaL conditions that maximize the global plant efficiency.•Natural limestone performance is limited by particle size at practical conditions due to pore plugging.•Pore plugging does not pose a significant limitation to the performance of natural dolomite.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.solmat.2017.04.013</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0927-0248 |
ispartof | Solar energy materials and solar cells, 2017-08, Vol.168, p.14-21 |
issn | 0927-0248 1879-3398 |
language | eng |
recordid | cdi_proquest_journals_1956027264 |
source | Elsevier ScienceDirect Journals |
subjects | CaL-CO2 capture CaL-CSP storage Calcium Calcium carbonate Carbon dioxide Carbonation Concentrated Solar Power Deactivation Dolomite Energy consumption Energy storage Heat Heat of reaction High temperature Kinetics Limestone Low temperature Minerals Multicycle conversion Natural carbonates Particle size Particulates Photovoltaic cells Power plants Reaction kinetics Roasting Solar energy Solar power Temperature effects Thickness |
title | Large-scale high-temperature solar energy storage using natural minerals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T19%3A55%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large-scale%20high-temperature%20solar%20energy%20storage%20using%20natural%20minerals&rft.jtitle=Solar%20energy%20materials%20and%20solar%20cells&rft.au=Benitez-Guerrero,%20Monica&rft.date=2017-08-01&rft.volume=168&rft.spage=14&rft.epage=21&rft.pages=14-21&rft.issn=0927-0248&rft.eissn=1879-3398&rft_id=info:doi/10.1016/j.solmat.2017.04.013&rft_dat=%3Cproquest_cross%3E1956027264%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1956027264&rft_id=info:pmid/&rft_els_id=S0927024817301721&rfr_iscdi=true |