Large-scale high-temperature solar energy storage using natural minerals

The present work is focused on thermochemical energy storage (TCES) in Concentrated Solar Power (CSP) plants by means of the Calcium-Looping (CaL) process using cheap, abundant and non-toxic natural carbonate minerals. CaL conditions for CSP storage involve calcination of CaCO3 in the solar receiver...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Solar energy materials and solar cells 2017-08, Vol.168, p.14-21
Hauptverfasser: Benitez-Guerrero, Monica, Sarrion, Beatriz, Perejon, Antonio, Sanchez-Jimenez, Pedro E., Perez-Maqueda, Luis A., Manuel Valverde, Jose
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 21
container_issue
container_start_page 14
container_title Solar energy materials and solar cells
container_volume 168
creator Benitez-Guerrero, Monica
Sarrion, Beatriz
Perejon, Antonio
Sanchez-Jimenez, Pedro E.
Perez-Maqueda, Luis A.
Manuel Valverde, Jose
description The present work is focused on thermochemical energy storage (TCES) in Concentrated Solar Power (CSP) plants by means of the Calcium-Looping (CaL) process using cheap, abundant and non-toxic natural carbonate minerals. CaL conditions for CSP storage involve calcination of CaCO3 in the solar receiver at relatively low temperature whereas carbonation of CaO is carried out at high temperature and high CO2 concentration to use the heat of reaction for power production by means of a CO2 closed power cycle. Under these conditions, large CaO particles derived from limestone to be used in industrial processes are rapidly deactivated due to pore-plugging, which limits the extent of the reaction. This is favored by the relatively small pores of the CaO skeleton generated by low temperature calcination, the large thickness of the CaCO3 layer built upon the CaO surface and the very fast carbonation kinetics. On the other hand, at CaL conditions for CSP storage does not limit carbonation of CaO derived from dolomite (dolime). Dolime is shown to exhibit a high multicycle conversion regardless of particle size, which is explained by the presence of inert MgO grains that allow the reacting gas to percolate inside the porous particles. Thermochemical Energy storage of CSP using the Calcium-Looping process [Display omitted] •CSP can be stored by means of the Calcium-Looping process in thermochemical form.•The CaL process uses cheap, abundant and non-toxic natural calcium carbonate minerals.•These materials may exhibit a high multicycle activity at CaL conditions that maximize the global plant efficiency.•Natural limestone performance is limited by particle size at practical conditions due to pore plugging.•Pore plugging does not pose a significant limitation to the performance of natural dolomite.
doi_str_mv 10.1016/j.solmat.2017.04.013
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1956027264</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927024817301721</els_id><sourcerecordid>1956027264</sourcerecordid><originalsourceid>FETCH-LOGICAL-c483t-6ca86dc340077447e42bda24e4cae3543cc61fbd3d0a61e1283653a22c6b458b3</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoOI6-gYuC69aTS9N2I8igjjDgRtchTc90UnoZk1SYtzdDXbv6F__lcD5C7ilkFKh87DI_9YMOGQNaZCAyoPyCrGhZVCnnVXlJVlCxIgUmymty430HAExysSLbnXYtpt7oHpODbQ9pwOGITofZYRJntUtwRNeeEh8mp1tMZm_HNhnPCd0ng42u7v0tudpHwbs_XZOv15fPzTbdfby9b553qRElD6k0upSN4QKgKIQoULC60UygMBp5Lrgxku7rhjegJUXKSi5zrhkzshZ5WfM1eVh2j276ntEH1U2zG-NJRatcAiuYFDEllpRxk_cO9-ro7KDdSVFQZ2aqUwszdWamQKjILNaelhrGD34sOuWNxdFgYx2aoJrJ_j_wC203d1U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1956027264</pqid></control><display><type>article</type><title>Large-scale high-temperature solar energy storage using natural minerals</title><source>Elsevier ScienceDirect Journals</source><creator>Benitez-Guerrero, Monica ; Sarrion, Beatriz ; Perejon, Antonio ; Sanchez-Jimenez, Pedro E. ; Perez-Maqueda, Luis A. ; Manuel Valverde, Jose</creator><creatorcontrib>Benitez-Guerrero, Monica ; Sarrion, Beatriz ; Perejon, Antonio ; Sanchez-Jimenez, Pedro E. ; Perez-Maqueda, Luis A. ; Manuel Valverde, Jose</creatorcontrib><description>The present work is focused on thermochemical energy storage (TCES) in Concentrated Solar Power (CSP) plants by means of the Calcium-Looping (CaL) process using cheap, abundant and non-toxic natural carbonate minerals. CaL conditions for CSP storage involve calcination of CaCO3 in the solar receiver at relatively low temperature whereas carbonation of CaO is carried out at high temperature and high CO2 concentration to use the heat of reaction for power production by means of a CO2 closed power cycle. Under these conditions, large CaO particles derived from limestone to be used in industrial processes are rapidly deactivated due to pore-plugging, which limits the extent of the reaction. This is favored by the relatively small pores of the CaO skeleton generated by low temperature calcination, the large thickness of the CaCO3 layer built upon the CaO surface and the very fast carbonation kinetics. On the other hand, at CaL conditions for CSP storage does not limit carbonation of CaO derived from dolomite (dolime). Dolime is shown to exhibit a high multicycle conversion regardless of particle size, which is explained by the presence of inert MgO grains that allow the reacting gas to percolate inside the porous particles. Thermochemical Energy storage of CSP using the Calcium-Looping process [Display omitted] •CSP can be stored by means of the Calcium-Looping process in thermochemical form.•The CaL process uses cheap, abundant and non-toxic natural calcium carbonate minerals.•These materials may exhibit a high multicycle activity at CaL conditions that maximize the global plant efficiency.•Natural limestone performance is limited by particle size at practical conditions due to pore plugging.•Pore plugging does not pose a significant limitation to the performance of natural dolomite.</description><identifier>ISSN: 0927-0248</identifier><identifier>EISSN: 1879-3398</identifier><identifier>DOI: 10.1016/j.solmat.2017.04.013</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>CaL-CO2 capture ; CaL-CSP storage ; Calcium ; Calcium carbonate ; Carbon dioxide ; Carbonation ; Concentrated Solar Power ; Deactivation ; Dolomite ; Energy consumption ; Energy storage ; Heat ; Heat of reaction ; High temperature ; Kinetics ; Limestone ; Low temperature ; Minerals ; Multicycle conversion ; Natural carbonates ; Particle size ; Particulates ; Photovoltaic cells ; Power plants ; Reaction kinetics ; Roasting ; Solar energy ; Solar power ; Temperature effects ; Thickness</subject><ispartof>Solar energy materials and solar cells, 2017-08, Vol.168, p.14-21</ispartof><rights>2017</rights><rights>Copyright Elsevier BV Aug 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c483t-6ca86dc340077447e42bda24e4cae3543cc61fbd3d0a61e1283653a22c6b458b3</citedby><cites>FETCH-LOGICAL-c483t-6ca86dc340077447e42bda24e4cae3543cc61fbd3d0a61e1283653a22c6b458b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0927024817301721$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Benitez-Guerrero, Monica</creatorcontrib><creatorcontrib>Sarrion, Beatriz</creatorcontrib><creatorcontrib>Perejon, Antonio</creatorcontrib><creatorcontrib>Sanchez-Jimenez, Pedro E.</creatorcontrib><creatorcontrib>Perez-Maqueda, Luis A.</creatorcontrib><creatorcontrib>Manuel Valverde, Jose</creatorcontrib><title>Large-scale high-temperature solar energy storage using natural minerals</title><title>Solar energy materials and solar cells</title><description>The present work is focused on thermochemical energy storage (TCES) in Concentrated Solar Power (CSP) plants by means of the Calcium-Looping (CaL) process using cheap, abundant and non-toxic natural carbonate minerals. CaL conditions for CSP storage involve calcination of CaCO3 in the solar receiver at relatively low temperature whereas carbonation of CaO is carried out at high temperature and high CO2 concentration to use the heat of reaction for power production by means of a CO2 closed power cycle. Under these conditions, large CaO particles derived from limestone to be used in industrial processes are rapidly deactivated due to pore-plugging, which limits the extent of the reaction. This is favored by the relatively small pores of the CaO skeleton generated by low temperature calcination, the large thickness of the CaCO3 layer built upon the CaO surface and the very fast carbonation kinetics. On the other hand, at CaL conditions for CSP storage does not limit carbonation of CaO derived from dolomite (dolime). Dolime is shown to exhibit a high multicycle conversion regardless of particle size, which is explained by the presence of inert MgO grains that allow the reacting gas to percolate inside the porous particles. Thermochemical Energy storage of CSP using the Calcium-Looping process [Display omitted] •CSP can be stored by means of the Calcium-Looping process in thermochemical form.•The CaL process uses cheap, abundant and non-toxic natural calcium carbonate minerals.•These materials may exhibit a high multicycle activity at CaL conditions that maximize the global plant efficiency.•Natural limestone performance is limited by particle size at practical conditions due to pore plugging.•Pore plugging does not pose a significant limitation to the performance of natural dolomite.</description><subject>CaL-CO2 capture</subject><subject>CaL-CSP storage</subject><subject>Calcium</subject><subject>Calcium carbonate</subject><subject>Carbon dioxide</subject><subject>Carbonation</subject><subject>Concentrated Solar Power</subject><subject>Deactivation</subject><subject>Dolomite</subject><subject>Energy consumption</subject><subject>Energy storage</subject><subject>Heat</subject><subject>Heat of reaction</subject><subject>High temperature</subject><subject>Kinetics</subject><subject>Limestone</subject><subject>Low temperature</subject><subject>Minerals</subject><subject>Multicycle conversion</subject><subject>Natural carbonates</subject><subject>Particle size</subject><subject>Particulates</subject><subject>Photovoltaic cells</subject><subject>Power plants</subject><subject>Reaction kinetics</subject><subject>Roasting</subject><subject>Solar energy</subject><subject>Solar power</subject><subject>Temperature effects</subject><subject>Thickness</subject><issn>0927-0248</issn><issn>1879-3398</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxDAUhoMoOI6-gYuC69aTS9N2I8igjjDgRtchTc90UnoZk1SYtzdDXbv6F__lcD5C7ilkFKh87DI_9YMOGQNaZCAyoPyCrGhZVCnnVXlJVlCxIgUmymty430HAExysSLbnXYtpt7oHpODbQ9pwOGITofZYRJntUtwRNeeEh8mp1tMZm_HNhnPCd0ng42u7v0tudpHwbs_XZOv15fPzTbdfby9b553qRElD6k0upSN4QKgKIQoULC60UygMBp5Lrgxku7rhjegJUXKSi5zrhkzshZ5WfM1eVh2j276ntEH1U2zG-NJRatcAiuYFDEllpRxk_cO9-ro7KDdSVFQZ2aqUwszdWamQKjILNaelhrGD34sOuWNxdFgYx2aoJrJ_j_wC203d1U</recordid><startdate>20170801</startdate><enddate>20170801</enddate><creator>Benitez-Guerrero, Monica</creator><creator>Sarrion, Beatriz</creator><creator>Perejon, Antonio</creator><creator>Sanchez-Jimenez, Pedro E.</creator><creator>Perez-Maqueda, Luis A.</creator><creator>Manuel Valverde, Jose</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20170801</creationdate><title>Large-scale high-temperature solar energy storage using natural minerals</title><author>Benitez-Guerrero, Monica ; Sarrion, Beatriz ; Perejon, Antonio ; Sanchez-Jimenez, Pedro E. ; Perez-Maqueda, Luis A. ; Manuel Valverde, Jose</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c483t-6ca86dc340077447e42bda24e4cae3543cc61fbd3d0a61e1283653a22c6b458b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>CaL-CO2 capture</topic><topic>CaL-CSP storage</topic><topic>Calcium</topic><topic>Calcium carbonate</topic><topic>Carbon dioxide</topic><topic>Carbonation</topic><topic>Concentrated Solar Power</topic><topic>Deactivation</topic><topic>Dolomite</topic><topic>Energy consumption</topic><topic>Energy storage</topic><topic>Heat</topic><topic>Heat of reaction</topic><topic>High temperature</topic><topic>Kinetics</topic><topic>Limestone</topic><topic>Low temperature</topic><topic>Minerals</topic><topic>Multicycle conversion</topic><topic>Natural carbonates</topic><topic>Particle size</topic><topic>Particulates</topic><topic>Photovoltaic cells</topic><topic>Power plants</topic><topic>Reaction kinetics</topic><topic>Roasting</topic><topic>Solar energy</topic><topic>Solar power</topic><topic>Temperature effects</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Benitez-Guerrero, Monica</creatorcontrib><creatorcontrib>Sarrion, Beatriz</creatorcontrib><creatorcontrib>Perejon, Antonio</creatorcontrib><creatorcontrib>Sanchez-Jimenez, Pedro E.</creatorcontrib><creatorcontrib>Perez-Maqueda, Luis A.</creatorcontrib><creatorcontrib>Manuel Valverde, Jose</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Solar energy materials and solar cells</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Benitez-Guerrero, Monica</au><au>Sarrion, Beatriz</au><au>Perejon, Antonio</au><au>Sanchez-Jimenez, Pedro E.</au><au>Perez-Maqueda, Luis A.</au><au>Manuel Valverde, Jose</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large-scale high-temperature solar energy storage using natural minerals</atitle><jtitle>Solar energy materials and solar cells</jtitle><date>2017-08-01</date><risdate>2017</risdate><volume>168</volume><spage>14</spage><epage>21</epage><pages>14-21</pages><issn>0927-0248</issn><eissn>1879-3398</eissn><abstract>The present work is focused on thermochemical energy storage (TCES) in Concentrated Solar Power (CSP) plants by means of the Calcium-Looping (CaL) process using cheap, abundant and non-toxic natural carbonate minerals. CaL conditions for CSP storage involve calcination of CaCO3 in the solar receiver at relatively low temperature whereas carbonation of CaO is carried out at high temperature and high CO2 concentration to use the heat of reaction for power production by means of a CO2 closed power cycle. Under these conditions, large CaO particles derived from limestone to be used in industrial processes are rapidly deactivated due to pore-plugging, which limits the extent of the reaction. This is favored by the relatively small pores of the CaO skeleton generated by low temperature calcination, the large thickness of the CaCO3 layer built upon the CaO surface and the very fast carbonation kinetics. On the other hand, at CaL conditions for CSP storage does not limit carbonation of CaO derived from dolomite (dolime). Dolime is shown to exhibit a high multicycle conversion regardless of particle size, which is explained by the presence of inert MgO grains that allow the reacting gas to percolate inside the porous particles. Thermochemical Energy storage of CSP using the Calcium-Looping process [Display omitted] •CSP can be stored by means of the Calcium-Looping process in thermochemical form.•The CaL process uses cheap, abundant and non-toxic natural calcium carbonate minerals.•These materials may exhibit a high multicycle activity at CaL conditions that maximize the global plant efficiency.•Natural limestone performance is limited by particle size at practical conditions due to pore plugging.•Pore plugging does not pose a significant limitation to the performance of natural dolomite.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.solmat.2017.04.013</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0927-0248
ispartof Solar energy materials and solar cells, 2017-08, Vol.168, p.14-21
issn 0927-0248
1879-3398
language eng
recordid cdi_proquest_journals_1956027264
source Elsevier ScienceDirect Journals
subjects CaL-CO2 capture
CaL-CSP storage
Calcium
Calcium carbonate
Carbon dioxide
Carbonation
Concentrated Solar Power
Deactivation
Dolomite
Energy consumption
Energy storage
Heat
Heat of reaction
High temperature
Kinetics
Limestone
Low temperature
Minerals
Multicycle conversion
Natural carbonates
Particle size
Particulates
Photovoltaic cells
Power plants
Reaction kinetics
Roasting
Solar energy
Solar power
Temperature effects
Thickness
title Large-scale high-temperature solar energy storage using natural minerals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T19%3A55%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large-scale%20high-temperature%20solar%20energy%20storage%20using%20natural%20minerals&rft.jtitle=Solar%20energy%20materials%20and%20solar%20cells&rft.au=Benitez-Guerrero,%20Monica&rft.date=2017-08-01&rft.volume=168&rft.spage=14&rft.epage=21&rft.pages=14-21&rft.issn=0927-0248&rft.eissn=1879-3398&rft_id=info:doi/10.1016/j.solmat.2017.04.013&rft_dat=%3Cproquest_cross%3E1956027264%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1956027264&rft_id=info:pmid/&rft_els_id=S0927024817301721&rfr_iscdi=true