Synthesis and Properties of the La^sub 1 − x − y^Eu^sub y^Ca^sub x^VO^sub 4^ (0 ≤ x, y ≤ 0.2) Compounds

The La1 − x Ca x VO4 and La1 − x − y Eu y Ca x VO4 (0 ≤ x, y ≤ 0.2) micro/nanosized powders were prepared by aqueous nitrate–citrate sol–gel synthesis. Phase composition of the sample depends on the x and y values. The La0.9Ca0.1VO4 is crystallized in monoclinic structure up to the x = 0.1. The La0....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale research letters 2017-05, Vol.12 (1), p.1
Hauptverfasser: Chukova, O V, Nedilko, S G, Slepets, A A, Nedilko, S A, Voitenko, T A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 1
container_title Nanoscale research letters
container_volume 12
creator Chukova, O V
Nedilko, S G
Slepets, A A
Nedilko, S A
Voitenko, T A
description The La1 − x Ca x VO4 and La1 − x − y Eu y Ca x VO4 (0 ≤ x, y ≤ 0.2) micro/nanosized powders were prepared by aqueous nitrate–citrate sol–gel synthesis. Phase composition of the sample depends on the x and y values. The La0.9Ca0.1VO4 is crystallized in monoclinic structure up to the x = 0.1. The La0.9Eu0.05Ca0.05VO4 sample was also attributed to the monoclinic structure. Increasing concentration of europium and calcium ions in La1 − x − yEu y Ca x VO4 solid solutions leads to the change of the crystal structure, and subsequently, stabilization of the tetragonal phase takes place. The obtained samples were characterized by XRD analysis, SEM microscopy, and IR spectroscopy. Luminescence properties of the synthesized powders were studied. Emission of the La1 − x Ca x VO4 samples is weak and consists of wide bands in the 450–800 nm spectral range. The observed bands at 570 and 630 were ascribed to electron transitions in the distorted VO4 3− vanadate groups. Emission of the La1 − x − y Eu y Ca x VO4 samples consists of narrow spectral lines in the 550–730 nm spectral range. The lines are caused by the 5D0 → 7FJ electron transitions in the Eu3+ ions. The Ca2+ ions incorporation increases the intensity of the Eu3+ ions luminescence. Structure of the spectra depends on Ca2+ concentration and excitation wave length. The carried out analysis has revealed that Eu3+ ions form at least two different types of emission centers in the La1 − x − y Eu y Ca x VO4 samples. The assumption is made that type I centers are formed by the Eu3+ ions in their regular positions in the crystal lattice, while the type II centers have complex structure and consist of Eu3+ ions, Ca2+ cations, and oxygen vacancies.
doi_str_mv 10.1186/s11671-017-2116-7
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_1955961230</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1955961230</sourcerecordid><originalsourceid>FETCH-proquest_journals_19559612303</originalsourceid><addsrcrecordid>eNpjYJA0NNAzNLQw0y82NDQzN9Q1MDTXNQIydc2ZGDgNTU3NdI3MzSJYgGxLY0Ndc1NzYw4GruLiLAMDE3MDczNOhvrgyrySjNTizGKFxLwUhYCi_ILUopLM1GKF_DQFoISCT2JccWmSguGjhs5HHZOAZAWcVRnnWgqWrIxzhqiqiAvzBzNM4hQ0DEAKO5eAtOgoVMI5BnpGmgrO-bkF-aV5KcU8DKxpiTnFqbxQmptB2c01xNlDt6Aov7A0tbgkPiu_tCgPKBVvaGlqamlmaGRsYEycKgCFbV8n</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1955961230</pqid></control><display><type>article</type><title>Synthesis and Properties of the La^sub 1 − x − y^Eu^sub y^Ca^sub x^VO^sub 4^ (0 ≤ x, y ≤ 0.2) Compounds</title><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Chukova, O V ; Nedilko, S G ; Slepets, A A ; Nedilko, S A ; Voitenko, T A</creator><creatorcontrib>Chukova, O V ; Nedilko, S G ; Slepets, A A ; Nedilko, S A ; Voitenko, T A</creatorcontrib><description>The La1 − x Ca x VO4 and La1 − x − y Eu y Ca x VO4 (0 ≤ x, y ≤ 0.2) micro/nanosized powders were prepared by aqueous nitrate–citrate sol–gel synthesis. Phase composition of the sample depends on the x and y values. The La0.9Ca0.1VO4 is crystallized in monoclinic structure up to the x = 0.1. The La0.9Eu0.05Ca0.05VO4 sample was also attributed to the monoclinic structure. Increasing concentration of europium and calcium ions in La1 − x − yEu y Ca x VO4 solid solutions leads to the change of the crystal structure, and subsequently, stabilization of the tetragonal phase takes place. The obtained samples were characterized by XRD analysis, SEM microscopy, and IR spectroscopy. Luminescence properties of the synthesized powders were studied. Emission of the La1 − x Ca x VO4 samples is weak and consists of wide bands in the 450–800 nm spectral range. The observed bands at 570 and 630 were ascribed to electron transitions in the distorted VO4 3− vanadate groups. Emission of the La1 − x − y Eu y Ca x VO4 samples consists of narrow spectral lines in the 550–730 nm spectral range. The lines are caused by the 5D0 → 7FJ electron transitions in the Eu3+ ions. The Ca2+ ions incorporation increases the intensity of the Eu3+ ions luminescence. Structure of the spectra depends on Ca2+ concentration and excitation wave length. The carried out analysis has revealed that Eu3+ ions form at least two different types of emission centers in the La1 − x − y Eu y Ca x VO4 samples. The assumption is made that type I centers are formed by the Eu3+ ions in their regular positions in the crystal lattice, while the type II centers have complex structure and consist of Eu3+ ions, Ca2+ cations, and oxygen vacancies.</description><identifier>ISSN: 1931-7573</identifier><identifier>EISSN: 1556-276X</identifier><identifier>DOI: 10.1186/s11671-017-2116-7</identifier><language>eng</language><publisher>Heidelberg: Springer Nature B.V</publisher><subject>Calcium ; Calcium ions ; Cations ; Citric acid ; Crystal lattices ; Crystal structure ; Crystallization ; Electron transitions ; Emission analysis ; Emissions ; Europium ; Infrared spectroscopy ; Ions ; Lattice vacancies ; Line spectra ; Luminescence ; Optical properties ; Phase composition ; Sol-gel processes ; Solid solutions ; Spectrum analysis ; Synthesis ; Vanadate</subject><ispartof>Nanoscale research letters, 2017-05, Vol.12 (1), p.1</ispartof><rights>Nanoscale Research Letters is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids></links><search><creatorcontrib>Chukova, O V</creatorcontrib><creatorcontrib>Nedilko, S G</creatorcontrib><creatorcontrib>Slepets, A A</creatorcontrib><creatorcontrib>Nedilko, S A</creatorcontrib><creatorcontrib>Voitenko, T A</creatorcontrib><title>Synthesis and Properties of the La^sub 1 − x − y^Eu^sub y^Ca^sub x^VO^sub 4^ (0 ≤ x, y ≤ 0.2) Compounds</title><title>Nanoscale research letters</title><description>The La1 − x Ca x VO4 and La1 − x − y Eu y Ca x VO4 (0 ≤ x, y ≤ 0.2) micro/nanosized powders were prepared by aqueous nitrate–citrate sol–gel synthesis. Phase composition of the sample depends on the x and y values. The La0.9Ca0.1VO4 is crystallized in monoclinic structure up to the x = 0.1. The La0.9Eu0.05Ca0.05VO4 sample was also attributed to the monoclinic structure. Increasing concentration of europium and calcium ions in La1 − x − yEu y Ca x VO4 solid solutions leads to the change of the crystal structure, and subsequently, stabilization of the tetragonal phase takes place. The obtained samples were characterized by XRD analysis, SEM microscopy, and IR spectroscopy. Luminescence properties of the synthesized powders were studied. Emission of the La1 − x Ca x VO4 samples is weak and consists of wide bands in the 450–800 nm spectral range. The observed bands at 570 and 630 were ascribed to electron transitions in the distorted VO4 3− vanadate groups. Emission of the La1 − x − y Eu y Ca x VO4 samples consists of narrow spectral lines in the 550–730 nm spectral range. The lines are caused by the 5D0 → 7FJ electron transitions in the Eu3+ ions. The Ca2+ ions incorporation increases the intensity of the Eu3+ ions luminescence. Structure of the spectra depends on Ca2+ concentration and excitation wave length. The carried out analysis has revealed that Eu3+ ions form at least two different types of emission centers in the La1 − x − y Eu y Ca x VO4 samples. The assumption is made that type I centers are formed by the Eu3+ ions in their regular positions in the crystal lattice, while the type II centers have complex structure and consist of Eu3+ ions, Ca2+ cations, and oxygen vacancies.</description><subject>Calcium</subject><subject>Calcium ions</subject><subject>Cations</subject><subject>Citric acid</subject><subject>Crystal lattices</subject><subject>Crystal structure</subject><subject>Crystallization</subject><subject>Electron transitions</subject><subject>Emission analysis</subject><subject>Emissions</subject><subject>Europium</subject><subject>Infrared spectroscopy</subject><subject>Ions</subject><subject>Lattice vacancies</subject><subject>Line spectra</subject><subject>Luminescence</subject><subject>Optical properties</subject><subject>Phase composition</subject><subject>Sol-gel processes</subject><subject>Solid solutions</subject><subject>Spectrum analysis</subject><subject>Synthesis</subject><subject>Vanadate</subject><issn>1931-7573</issn><issn>1556-276X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpjYJA0NNAzNLQw0y82NDQzN9Q1MDTXNQIydc2ZGDgNTU3NdI3MzSJYgGxLY0Ndc1NzYw4GruLiLAMDE3MDczNOhvrgyrySjNTizGKFxLwUhYCi_ILUopLM1GKF_DQFoISCT2JccWmSguGjhs5HHZOAZAWcVRnnWgqWrIxzhqiqiAvzBzNM4hQ0DEAKO5eAtOgoVMI5BnpGmgrO-bkF-aV5KcU8DKxpiTnFqbxQmptB2c01xNlDt6Aov7A0tbgkPiu_tCgPKBVvaGlqamlmaGRsYEycKgCFbV8n</recordid><startdate>20170501</startdate><enddate>20170501</enddate><creator>Chukova, O V</creator><creator>Nedilko, S G</creator><creator>Slepets, A A</creator><creator>Nedilko, S A</creator><creator>Voitenko, T A</creator><general>Springer Nature B.V</general><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20170501</creationdate><title>Synthesis and Properties of the La^sub 1 − x − y^Eu^sub y^Ca^sub x^VO^sub 4^ (0 ≤ x, y ≤ 0.2) Compounds</title><author>Chukova, O V ; Nedilko, S G ; Slepets, A A ; Nedilko, S A ; Voitenko, T A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_19559612303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Calcium</topic><topic>Calcium ions</topic><topic>Cations</topic><topic>Citric acid</topic><topic>Crystal lattices</topic><topic>Crystal structure</topic><topic>Crystallization</topic><topic>Electron transitions</topic><topic>Emission analysis</topic><topic>Emissions</topic><topic>Europium</topic><topic>Infrared spectroscopy</topic><topic>Ions</topic><topic>Lattice vacancies</topic><topic>Line spectra</topic><topic>Luminescence</topic><topic>Optical properties</topic><topic>Phase composition</topic><topic>Sol-gel processes</topic><topic>Solid solutions</topic><topic>Spectrum analysis</topic><topic>Synthesis</topic><topic>Vanadate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chukova, O V</creatorcontrib><creatorcontrib>Nedilko, S G</creatorcontrib><creatorcontrib>Slepets, A A</creatorcontrib><creatorcontrib>Nedilko, S A</creatorcontrib><creatorcontrib>Voitenko, T A</creatorcontrib><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nanoscale research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chukova, O V</au><au>Nedilko, S G</au><au>Slepets, A A</au><au>Nedilko, S A</au><au>Voitenko, T A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis and Properties of the La^sub 1 − x − y^Eu^sub y^Ca^sub x^VO^sub 4^ (0 ≤ x, y ≤ 0.2) Compounds</atitle><jtitle>Nanoscale research letters</jtitle><date>2017-05-01</date><risdate>2017</risdate><volume>12</volume><issue>1</issue><spage>1</spage><pages>1-</pages><issn>1931-7573</issn><eissn>1556-276X</eissn><abstract>The La1 − x Ca x VO4 and La1 − x − y Eu y Ca x VO4 (0 ≤ x, y ≤ 0.2) micro/nanosized powders were prepared by aqueous nitrate–citrate sol–gel synthesis. Phase composition of the sample depends on the x and y values. The La0.9Ca0.1VO4 is crystallized in monoclinic structure up to the x = 0.1. The La0.9Eu0.05Ca0.05VO4 sample was also attributed to the monoclinic structure. Increasing concentration of europium and calcium ions in La1 − x − yEu y Ca x VO4 solid solutions leads to the change of the crystal structure, and subsequently, stabilization of the tetragonal phase takes place. The obtained samples were characterized by XRD analysis, SEM microscopy, and IR spectroscopy. Luminescence properties of the synthesized powders were studied. Emission of the La1 − x Ca x VO4 samples is weak and consists of wide bands in the 450–800 nm spectral range. The observed bands at 570 and 630 were ascribed to electron transitions in the distorted VO4 3− vanadate groups. Emission of the La1 − x − y Eu y Ca x VO4 samples consists of narrow spectral lines in the 550–730 nm spectral range. The lines are caused by the 5D0 → 7FJ electron transitions in the Eu3+ ions. The Ca2+ ions incorporation increases the intensity of the Eu3+ ions luminescence. Structure of the spectra depends on Ca2+ concentration and excitation wave length. The carried out analysis has revealed that Eu3+ ions form at least two different types of emission centers in the La1 − x − y Eu y Ca x VO4 samples. The assumption is made that type I centers are formed by the Eu3+ ions in their regular positions in the crystal lattice, while the type II centers have complex structure and consist of Eu3+ ions, Ca2+ cations, and oxygen vacancies.</abstract><cop>Heidelberg</cop><pub>Springer Nature B.V</pub><doi>10.1186/s11671-017-2116-7</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1931-7573
ispartof Nanoscale research letters, 2017-05, Vol.12 (1), p.1
issn 1931-7573
1556-276X
language eng
recordid cdi_proquest_journals_1955961230
source DOAJ Directory of Open Access Journals; PubMed Central Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Calcium
Calcium ions
Cations
Citric acid
Crystal lattices
Crystal structure
Crystallization
Electron transitions
Emission analysis
Emissions
Europium
Infrared spectroscopy
Ions
Lattice vacancies
Line spectra
Luminescence
Optical properties
Phase composition
Sol-gel processes
Solid solutions
Spectrum analysis
Synthesis
Vanadate
title Synthesis and Properties of the La^sub 1 − x − y^Eu^sub y^Ca^sub x^VO^sub 4^ (0 ≤ x, y ≤ 0.2) Compounds
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T23%3A55%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis%20and%20Properties%20of%20the%20La%5Esub%201%E2%80%89%E2%88%92%E2%80%89x%E2%80%89%E2%88%92%E2%80%89y%5EEu%5Esub%20y%5ECa%5Esub%20x%5EVO%5Esub%204%5E%20(0%E2%80%89%E2%89%A4%E2%80%89x,%20y%E2%80%89%E2%89%A4%E2%80%890.2)%20Compounds&rft.jtitle=Nanoscale%20research%20letters&rft.au=Chukova,%20O%20V&rft.date=2017-05-01&rft.volume=12&rft.issue=1&rft.spage=1&rft.pages=1-&rft.issn=1931-7573&rft.eissn=1556-276X&rft_id=info:doi/10.1186/s11671-017-2116-7&rft_dat=%3Cproquest%3E1955961230%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1955961230&rft_id=info:pmid/&rfr_iscdi=true