Estimating the probability of failure when testing reveals no failures

Formulas for estimating the probability of failure when testing reveals no errors are introduced. These formulas incorporate random testing results, information about the input distribution; and prior assumptions about the probability of failure of the software. The formulas are not restricted to eq...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on software engineering 1992-01, Vol.18 (1), p.33-43
Hauptverfasser: Miller, K.W., Morell, L.J., Noonan, R.E., Park, S.K., Nicol, D.M., Murrill, B.W., Voas, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 43
container_issue 1
container_start_page 33
container_title IEEE transactions on software engineering
container_volume 18
creator Miller, K.W.
Morell, L.J.
Noonan, R.E.
Park, S.K.
Nicol, D.M.
Murrill, B.W.
Voas, M.
description Formulas for estimating the probability of failure when testing reveals no errors are introduced. These formulas incorporate random testing results, information about the input distribution; and prior assumptions about the probability of failure of the software. The formulas are not restricted to equally likely input distributions, and the probability of failure estimate can be adjusted when assumptions about the input distribution change. The formulas are based on a discrete sample space statistical model of software and include Bayesian prior assumptions. Reusable software and software in life-critical applications are particularly appropriate candidates for this type of analysis.< >
doi_str_mv 10.1109/32.120314
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_195563898</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>120314</ieee_id><sourcerecordid>25887921</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-a1087aad49d9ce4c3b7a218df2a8922461613f6aa525f90575af7532943f12823</originalsourceid><addsrcrecordid>eNqNkUtLxDAUhYMoOD4WbsVFERFcVPO6be5SxBcIbnQd7nQSp1LbMeko8--NUx_gxllduOfLPYccxvYEPxWC45mSp0JyJfQaGwlUmCuQfJ2NOEeTAxjcZFsxPnPOoSxhxK4uY1-_UF-3T1k_ddksdGMa103dL7LOZ57qZh5c9j51bda7uOSCe3PUxKztvvW4wzZ8Wrndr7nNHq8uHy5u8rv769uL87u80rrscxLclEQTjROsnK7UuCQpzMRLMiilLkQhlC-IQILHFBHIl6AkauWFNFJts-Phbsr5Ok957EsdK9c01LpuHq1EJcpCw_-gkQI4rgCCMSVKsRIIgCaBh3_A524e2vQtViBAocwSOhmgKnQxBuftLKQewsIKbj-btEraocnEHn0dpFhR4wO1VR1_HmhVACJP2MGAtRTJtn349EPJuVaKF0neH-TaOffrNlh8AAHhqwg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195563898</pqid></control><display><type>article</type><title>Estimating the probability of failure when testing reveals no failures</title><source>IEEE Electronic Library (IEL)</source><creator>Miller, K.W. ; Morell, L.J. ; Noonan, R.E. ; Park, S.K. ; Nicol, D.M. ; Murrill, B.W. ; Voas, M.</creator><creatorcontrib>Miller, K.W. ; Morell, L.J. ; Noonan, R.E. ; Park, S.K. ; Nicol, D.M. ; Murrill, B.W. ; Voas, M.</creatorcontrib><description>Formulas for estimating the probability of failure when testing reveals no errors are introduced. These formulas incorporate random testing results, information about the input distribution; and prior assumptions about the probability of failure of the software. The formulas are not restricted to equally likely input distributions, and the probability of failure estimate can be adjusted when assumptions about the input distribution change. The formulas are based on a discrete sample space statistical model of software and include Bayesian prior assumptions. Reusable software and software in life-critical applications are particularly appropriate candidates for this type of analysis.&lt; &gt;</description><identifier>ISSN: 0098-5589</identifier><identifier>EISSN: 1939-3520</identifier><identifier>DOI: 10.1109/32.120314</identifier><identifier>CODEN: IESEDJ</identifier><language>eng</language><publisher>Legacy CDMS: IEEE</publisher><subject>Application software ; Applied sciences ; Bayesian analysis ; Bayesian methods ; Computer errors ; Computer programming ; Computer science ; Computer science; control theory; systems ; Estimates ; Exact sciences and technology ; Failure ; Mathematical models ; Methods ; NASA ; Probability ; Probability density function ; Quality Assurance And Reliability ; Software ; Software engineering ; Software reliability ; Software reusability ; Software testing ; System testing ; Testing</subject><ispartof>IEEE transactions on software engineering, 1992-01, Vol.18 (1), p.33-43</ispartof><rights>1993 INIST-CNRS</rights><rights>Copyright Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 1992</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-a1087aad49d9ce4c3b7a218df2a8922461613f6aa525f90575af7532943f12823</citedby><cites>FETCH-LOGICAL-c447t-a1087aad49d9ce4c3b7a218df2a8922461613f6aa525f90575af7532943f12823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/120314$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/120314$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4365990$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Miller, K.W.</creatorcontrib><creatorcontrib>Morell, L.J.</creatorcontrib><creatorcontrib>Noonan, R.E.</creatorcontrib><creatorcontrib>Park, S.K.</creatorcontrib><creatorcontrib>Nicol, D.M.</creatorcontrib><creatorcontrib>Murrill, B.W.</creatorcontrib><creatorcontrib>Voas, M.</creatorcontrib><title>Estimating the probability of failure when testing reveals no failures</title><title>IEEE transactions on software engineering</title><addtitle>TSE</addtitle><description>Formulas for estimating the probability of failure when testing reveals no errors are introduced. These formulas incorporate random testing results, information about the input distribution; and prior assumptions about the probability of failure of the software. The formulas are not restricted to equally likely input distributions, and the probability of failure estimate can be adjusted when assumptions about the input distribution change. The formulas are based on a discrete sample space statistical model of software and include Bayesian prior assumptions. Reusable software and software in life-critical applications are particularly appropriate candidates for this type of analysis.&lt; &gt;</description><subject>Application software</subject><subject>Applied sciences</subject><subject>Bayesian analysis</subject><subject>Bayesian methods</subject><subject>Computer errors</subject><subject>Computer programming</subject><subject>Computer science</subject><subject>Computer science; control theory; systems</subject><subject>Estimates</subject><subject>Exact sciences and technology</subject><subject>Failure</subject><subject>Mathematical models</subject><subject>Methods</subject><subject>NASA</subject><subject>Probability</subject><subject>Probability density function</subject><subject>Quality Assurance And Reliability</subject><subject>Software</subject><subject>Software engineering</subject><subject>Software reliability</subject><subject>Software reusability</subject><subject>Software testing</subject><subject>System testing</subject><subject>Testing</subject><issn>0098-5589</issn><issn>1939-3520</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><sourceid>CYI</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkUtLxDAUhYMoOD4WbsVFERFcVPO6be5SxBcIbnQd7nQSp1LbMeko8--NUx_gxllduOfLPYccxvYEPxWC45mSp0JyJfQaGwlUmCuQfJ2NOEeTAxjcZFsxPnPOoSxhxK4uY1-_UF-3T1k_ddksdGMa103dL7LOZ57qZh5c9j51bda7uOSCe3PUxKztvvW4wzZ8Wrndr7nNHq8uHy5u8rv769uL87u80rrscxLclEQTjROsnK7UuCQpzMRLMiilLkQhlC-IQILHFBHIl6AkauWFNFJts-Phbsr5Ok957EsdK9c01LpuHq1EJcpCw_-gkQI4rgCCMSVKsRIIgCaBh3_A524e2vQtViBAocwSOhmgKnQxBuftLKQewsIKbj-btEraocnEHn0dpFhR4wO1VR1_HmhVACJP2MGAtRTJtn349EPJuVaKF0neH-TaOffrNlh8AAHhqwg</recordid><startdate>199201</startdate><enddate>199201</enddate><creator>Miller, K.W.</creator><creator>Morell, L.J.</creator><creator>Noonan, R.E.</creator><creator>Park, S.K.</creator><creator>Nicol, D.M.</creator><creator>Murrill, B.W.</creator><creator>Voas, M.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>IEEE Computer Society</general><scope>CYE</scope><scope>CYI</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88E</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>K9.</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7SC</scope><scope>L~C</scope><scope>L~D</scope><scope>7TB</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>199201</creationdate><title>Estimating the probability of failure when testing reveals no failures</title><author>Miller, K.W. ; Morell, L.J. ; Noonan, R.E. ; Park, S.K. ; Nicol, D.M. ; Murrill, B.W. ; Voas, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-a1087aad49d9ce4c3b7a218df2a8922461613f6aa525f90575af7532943f12823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>Application software</topic><topic>Applied sciences</topic><topic>Bayesian analysis</topic><topic>Bayesian methods</topic><topic>Computer errors</topic><topic>Computer programming</topic><topic>Computer science</topic><topic>Computer science; control theory; systems</topic><topic>Estimates</topic><topic>Exact sciences and technology</topic><topic>Failure</topic><topic>Mathematical models</topic><topic>Methods</topic><topic>NASA</topic><topic>Probability</topic><topic>Probability density function</topic><topic>Quality Assurance And Reliability</topic><topic>Software</topic><topic>Software engineering</topic><topic>Software reliability</topic><topic>Software reusability</topic><topic>Software testing</topic><topic>System testing</topic><topic>Testing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miller, K.W.</creatorcontrib><creatorcontrib>Morell, L.J.</creatorcontrib><creatorcontrib>Noonan, R.E.</creatorcontrib><creatorcontrib>Park, S.K.</creatorcontrib><creatorcontrib>Nicol, D.M.</creatorcontrib><creatorcontrib>Murrill, B.W.</creatorcontrib><creatorcontrib>Voas, M.</creatorcontrib><collection>NASA Scientific and Technical Information</collection><collection>NASA Technical Reports Server</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>IEEE transactions on software engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Miller, K.W.</au><au>Morell, L.J.</au><au>Noonan, R.E.</au><au>Park, S.K.</au><au>Nicol, D.M.</au><au>Murrill, B.W.</au><au>Voas, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimating the probability of failure when testing reveals no failures</atitle><jtitle>IEEE transactions on software engineering</jtitle><stitle>TSE</stitle><date>1992-01</date><risdate>1992</risdate><volume>18</volume><issue>1</issue><spage>33</spage><epage>43</epage><pages>33-43</pages><issn>0098-5589</issn><eissn>1939-3520</eissn><coden>IESEDJ</coden><abstract>Formulas for estimating the probability of failure when testing reveals no errors are introduced. These formulas incorporate random testing results, information about the input distribution; and prior assumptions about the probability of failure of the software. The formulas are not restricted to equally likely input distributions, and the probability of failure estimate can be adjusted when assumptions about the input distribution change. The formulas are based on a discrete sample space statistical model of software and include Bayesian prior assumptions. Reusable software and software in life-critical applications are particularly appropriate candidates for this type of analysis.&lt; &gt;</abstract><cop>Legacy CDMS</cop><pub>IEEE</pub><doi>10.1109/32.120314</doi><tpages>11</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0098-5589
ispartof IEEE transactions on software engineering, 1992-01, Vol.18 (1), p.33-43
issn 0098-5589
1939-3520
language eng
recordid cdi_proquest_journals_195563898
source IEEE Electronic Library (IEL)
subjects Application software
Applied sciences
Bayesian analysis
Bayesian methods
Computer errors
Computer programming
Computer science
Computer science
control theory
systems
Estimates
Exact sciences and technology
Failure
Mathematical models
Methods
NASA
Probability
Probability density function
Quality Assurance And Reliability
Software
Software engineering
Software reliability
Software reusability
Software testing
System testing
Testing
title Estimating the probability of failure when testing reveals no failures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T15%3A15%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimating%20the%20probability%20of%20failure%20when%20testing%20reveals%20no%20failures&rft.jtitle=IEEE%20transactions%20on%20software%20engineering&rft.au=Miller,%20K.W.&rft.date=1992-01&rft.volume=18&rft.issue=1&rft.spage=33&rft.epage=43&rft.pages=33-43&rft.issn=0098-5589&rft.eissn=1939-3520&rft.coden=IESEDJ&rft_id=info:doi/10.1109/32.120314&rft_dat=%3Cproquest_RIE%3E25887921%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=195563898&rft_id=info:pmid/&rft_ieee_id=120314&rfr_iscdi=true