A complete multifluid model for bipolar semiconductors, with interacting carriers, phonons, and photons

If electrons (e) and holes (h) in metals or semiconductors are heated to the temperatures T e and T h greater than the lattice temperature, the electron–phonon interaction causes energy relaxation. In the non-uniform case a momentum relaxation occurs as well. In view of such an application, a new mo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Zeitschrift für angewandte Mathematik und Physik 2017-12, Vol.68 (6), p.1-18, Article 130
1. Verfasser: Rossani, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 18
container_issue 6
container_start_page 1
container_title Zeitschrift für angewandte Mathematik und Physik
container_volume 68
creator Rossani, A.
description If electrons (e) and holes (h) in metals or semiconductors are heated to the temperatures T e and T h greater than the lattice temperature, the electron–phonon interaction causes energy relaxation. In the non-uniform case a momentum relaxation occurs as well. In view of such an application, a new model, based on an asymptotic procedure for solving the kinetic equations of carriers, phonons, and photons, is proposed, which gives naturally the displaced Maxwellian at the leading order. Several generation–recombination (GR) events occur in bipolar semiconductors. In the presence of photons the most important ones are the radiative GR events, direct, indirect, and exciton-catalyzed. Phonons and photons are treated here as a participating species, with their own equation. All the phonon–photon interactions are accounted for. Moreover, carrier–photon (Compton) interactions are introduced, which make complete the model. After that, balance equations for the electron number, hole number, energy densities, and momentum densities are constructed, which constitute now a system of macroscopic equations for the chemical potentials (carriers), the temperatures (carriers and bosons), and the drift velocities (carriers and bosons). In the drift–diffusion approximation the constitutive laws are derived and the Onsager relations recovered, even in the presence of an external magnetic field.
doi_str_mv 10.1007/s00033-017-0875-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1955585337</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1955585337</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-90d4bafecae4a2cdb7842132dfaacc171335073a9ec582967166887f3fe8d2063</originalsourceid><addsrcrecordid>eNp1kEtLxDAUhYMoOD5-gLuAW6t5NE26HAZfMOBG1yGTx0yGtqlJivjvTakLN67uvdxzzr18ANxgdI8R4g8JIURphTCvkOCsEidghWuCqhbR9hSsEKrrihDOzsFFSsei5hjRFdivoQ792NlsYT912btu8gb2wdgOuhDhzo-hUxEm23sdBjPpHGK6g18-H6Afso1KZz_soVYxejuvxkMYwlAaNZh5yGW4AmdOdcle_9ZL8PH0-L55qbZvz6-b9bbSpBG5fGvqnXJWK1sros2Oi5pgSoxTSmvMMaUMcapaq5kgbcNx0wjBHXVWGIIaeglul9wxhs_JpiyPYYpDOSlxyxgTjFJeVHhR6RhSitbJMfpexW-JkZx5yoWnLDzlzFOK4iGLJxXtsLfxT_K_ph8fPHmW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1955585337</pqid></control><display><type>article</type><title>A complete multifluid model for bipolar semiconductors, with interacting carriers, phonons, and photons</title><source>SpringerNature Journals</source><creator>Rossani, A.</creator><creatorcontrib>Rossani, A.</creatorcontrib><description>If electrons (e) and holes (h) in metals or semiconductors are heated to the temperatures T e and T h greater than the lattice temperature, the electron–phonon interaction causes energy relaxation. In the non-uniform case a momentum relaxation occurs as well. In view of such an application, a new model, based on an asymptotic procedure for solving the kinetic equations of carriers, phonons, and photons, is proposed, which gives naturally the displaced Maxwellian at the leading order. Several generation–recombination (GR) events occur in bipolar semiconductors. In the presence of photons the most important ones are the radiative GR events, direct, indirect, and exciton-catalyzed. Phonons and photons are treated here as a participating species, with their own equation. All the phonon–photon interactions are accounted for. Moreover, carrier–photon (Compton) interactions are introduced, which make complete the model. After that, balance equations for the electron number, hole number, energy densities, and momentum densities are constructed, which constitute now a system of macroscopic equations for the chemical potentials (carriers), the temperatures (carriers and bosons), and the drift velocities (carriers and bosons). In the drift–diffusion approximation the constitutive laws are derived and the Onsager relations recovered, even in the presence of an external magnetic field.</description><identifier>ISSN: 0044-2275</identifier><identifier>EISSN: 1420-9039</identifier><identifier>DOI: 10.1007/s00033-017-0875-8</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Asymptotic methods ; Bosons ; Displacements (lattice) ; Drift ; Engineering ; Kinetic equations ; Macroscopic equations ; Mathematical Methods in Physics ; Mathematical models ; Phonons ; Photons ; Semiconductors ; Theoretical and Applied Mechanics</subject><ispartof>Zeitschrift für angewandte Mathematik und Physik, 2017-12, Vol.68 (6), p.1-18, Article 130</ispartof><rights>Springer International Publishing AG 2017</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-90d4bafecae4a2cdb7842132dfaacc171335073a9ec582967166887f3fe8d2063</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00033-017-0875-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00033-017-0875-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Rossani, A.</creatorcontrib><title>A complete multifluid model for bipolar semiconductors, with interacting carriers, phonons, and photons</title><title>Zeitschrift für angewandte Mathematik und Physik</title><addtitle>Z. Angew. Math. Phys</addtitle><description>If electrons (e) and holes (h) in metals or semiconductors are heated to the temperatures T e and T h greater than the lattice temperature, the electron–phonon interaction causes energy relaxation. In the non-uniform case a momentum relaxation occurs as well. In view of such an application, a new model, based on an asymptotic procedure for solving the kinetic equations of carriers, phonons, and photons, is proposed, which gives naturally the displaced Maxwellian at the leading order. Several generation–recombination (GR) events occur in bipolar semiconductors. In the presence of photons the most important ones are the radiative GR events, direct, indirect, and exciton-catalyzed. Phonons and photons are treated here as a participating species, with their own equation. All the phonon–photon interactions are accounted for. Moreover, carrier–photon (Compton) interactions are introduced, which make complete the model. After that, balance equations for the electron number, hole number, energy densities, and momentum densities are constructed, which constitute now a system of macroscopic equations for the chemical potentials (carriers), the temperatures (carriers and bosons), and the drift velocities (carriers and bosons). In the drift–diffusion approximation the constitutive laws are derived and the Onsager relations recovered, even in the presence of an external magnetic field.</description><subject>Asymptotic methods</subject><subject>Bosons</subject><subject>Displacements (lattice)</subject><subject>Drift</subject><subject>Engineering</subject><subject>Kinetic equations</subject><subject>Macroscopic equations</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematical models</subject><subject>Phonons</subject><subject>Photons</subject><subject>Semiconductors</subject><subject>Theoretical and Applied Mechanics</subject><issn>0044-2275</issn><issn>1420-9039</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLxDAUhYMoOD5-gLuAW6t5NE26HAZfMOBG1yGTx0yGtqlJivjvTakLN67uvdxzzr18ANxgdI8R4g8JIURphTCvkOCsEidghWuCqhbR9hSsEKrrihDOzsFFSsei5hjRFdivoQ792NlsYT912btu8gb2wdgOuhDhzo-hUxEm23sdBjPpHGK6g18-H6Afso1KZz_soVYxejuvxkMYwlAaNZh5yGW4AmdOdcle_9ZL8PH0-L55qbZvz6-b9bbSpBG5fGvqnXJWK1sros2Oi5pgSoxTSmvMMaUMcapaq5kgbcNx0wjBHXVWGIIaeglul9wxhs_JpiyPYYpDOSlxyxgTjFJeVHhR6RhSitbJMfpexW-JkZx5yoWnLDzlzFOK4iGLJxXtsLfxT_K_ph8fPHmW</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Rossani, A.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20171201</creationdate><title>A complete multifluid model for bipolar semiconductors, with interacting carriers, phonons, and photons</title><author>Rossani, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-90d4bafecae4a2cdb7842132dfaacc171335073a9ec582967166887f3fe8d2063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Asymptotic methods</topic><topic>Bosons</topic><topic>Displacements (lattice)</topic><topic>Drift</topic><topic>Engineering</topic><topic>Kinetic equations</topic><topic>Macroscopic equations</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematical models</topic><topic>Phonons</topic><topic>Photons</topic><topic>Semiconductors</topic><topic>Theoretical and Applied Mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rossani, A.</creatorcontrib><collection>CrossRef</collection><jtitle>Zeitschrift für angewandte Mathematik und Physik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rossani, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A complete multifluid model for bipolar semiconductors, with interacting carriers, phonons, and photons</atitle><jtitle>Zeitschrift für angewandte Mathematik und Physik</jtitle><stitle>Z. Angew. Math. Phys</stitle><date>2017-12-01</date><risdate>2017</risdate><volume>68</volume><issue>6</issue><spage>1</spage><epage>18</epage><pages>1-18</pages><artnum>130</artnum><issn>0044-2275</issn><eissn>1420-9039</eissn><abstract>If electrons (e) and holes (h) in metals or semiconductors are heated to the temperatures T e and T h greater than the lattice temperature, the electron–phonon interaction causes energy relaxation. In the non-uniform case a momentum relaxation occurs as well. In view of such an application, a new model, based on an asymptotic procedure for solving the kinetic equations of carriers, phonons, and photons, is proposed, which gives naturally the displaced Maxwellian at the leading order. Several generation–recombination (GR) events occur in bipolar semiconductors. In the presence of photons the most important ones are the radiative GR events, direct, indirect, and exciton-catalyzed. Phonons and photons are treated here as a participating species, with their own equation. All the phonon–photon interactions are accounted for. Moreover, carrier–photon (Compton) interactions are introduced, which make complete the model. After that, balance equations for the electron number, hole number, energy densities, and momentum densities are constructed, which constitute now a system of macroscopic equations for the chemical potentials (carriers), the temperatures (carriers and bosons), and the drift velocities (carriers and bosons). In the drift–diffusion approximation the constitutive laws are derived and the Onsager relations recovered, even in the presence of an external magnetic field.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00033-017-0875-8</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0044-2275
ispartof Zeitschrift für angewandte Mathematik und Physik, 2017-12, Vol.68 (6), p.1-18, Article 130
issn 0044-2275
1420-9039
language eng
recordid cdi_proquest_journals_1955585337
source SpringerNature Journals
subjects Asymptotic methods
Bosons
Displacements (lattice)
Drift
Engineering
Kinetic equations
Macroscopic equations
Mathematical Methods in Physics
Mathematical models
Phonons
Photons
Semiconductors
Theoretical and Applied Mechanics
title A complete multifluid model for bipolar semiconductors, with interacting carriers, phonons, and photons
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T18%3A49%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20complete%20multifluid%20model%20for%20bipolar%20semiconductors,%20with%20interacting%20carriers,%20phonons,%20and%20photons&rft.jtitle=Zeitschrift%20f%C3%BCr%20angewandte%20Mathematik%20und%20Physik&rft.au=Rossani,%20A.&rft.date=2017-12-01&rft.volume=68&rft.issue=6&rft.spage=1&rft.epage=18&rft.pages=1-18&rft.artnum=130&rft.issn=0044-2275&rft.eissn=1420-9039&rft_id=info:doi/10.1007/s00033-017-0875-8&rft_dat=%3Cproquest_cross%3E1955585337%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1955585337&rft_id=info:pmid/&rfr_iscdi=true