Microstructure and nanomechanical properties of pulsed excimer laser deposited DLC:Ag films: Enhanced nanotribological response
Diamond-like carbon:silver (DLC:Ag) thin films, with metal contents as high as 16.8at.%, have been deposited on silicon substrates using pulsed excimer laser deposition; the produced DLC:Ag films sustain a substantial sp3 content (36%) in the DLC matrix even for the highest Ag content (~16.8at.%), i...
Gespeichert in:
Veröffentlicht in: | Surface & coatings technology 2017-01, Vol.309, p.320-330 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 330 |
---|---|
container_issue | |
container_start_page | 320 |
container_title | Surface & coatings technology |
container_volume | 309 |
creator | Constantinou, M. Pervolaraki, M. Nikolaou, P. Prouskas, C. Patsalas, P. Kelires, P. Giapintzakis, J. Constantinides, G. |
description | Diamond-like carbon:silver (DLC:Ag) thin films, with metal contents as high as 16.8at.%, have been deposited on silicon substrates using pulsed excimer laser deposition; the produced DLC:Ag films sustain a substantial sp3 content (36%) in the DLC matrix even for the highest Ag content (~16.8at.%), in contrast to previous reports. The morphological, topographical, crystallographic, compositional and mechanical/tribological characteristics of the films have been studied using scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and nanoindentation/nanoscratch tests, respectively. The low miscibility between carbon and silver leads to a nanocomposite material that exhibits a reduced elastic modulus and hardness that scale inversely with the silver content. The mechanical capacity reduction is attributed to the incorporation of the soft/compliant silver phase and the subsequent graphitization of the amorphous carbon matrix, as quantified through XPS. This mechanical softening response, however, is coupled with an increased ductility and an enhanced tribomechanical response (70% increase in the critical load to film failure), making this class of DLC-metal nanocomposites of great interest for protective coatings and other functional applications.
[Display omitted]
•PLD from sector target can yield high smoothness/low friction DLC:Ag nanocomposites.•Pulse excimer laser deposited DLC:Ag nanocomposites retain significant sp3%.•Graphitization leads to residual stress/hardness/elastic modulus reduction.•DLC:Ag8at.% nanocomposites, significantly enhance their tribological response.•High levels of Ag-doping can lead to detrimental nanomechanical effects. |
doi_str_mv | 10.1016/j.surfcoat.2016.11.084 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1955047465</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0257897216312166</els_id><sourcerecordid>1955047465</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-dac9c367785da77769431d4ecbe06b4e9ef9bfc3b730aef40294ad974ed3a62c3</originalsourceid><addsrcrecordid>eNqFkD1PwzAQhi0EEqXwF5Al5gQ7ceK6E6iUD6mIBWbLsS_FVRoH20Ew8ddxKcwsZ51195zeB6FzSnJKaH25ycPoW-1UzIvU55TmZMYO0ITOuMjKkvFDNCFFxbOZ4MUxOglhQwihXLAJ-nq02rsQ_ajj6AGr3uBe9W4L-lX1VqsOD94N4KOFgF2Lh7ELYDB8aLsFjzsVUjUwuGBj-r9ZLebXa9zabhvmeNkniIY9MnrbuM6tf6AewuD6AKfoqFWJePb7TtHL7fJ5cZ-tnu4eFterTDNSx8woLXRZcz6rjOKc14KV1DDQDZC6YSCgFU2ry4aXREHLSCGYMoIzMKWqC11O0cWem9K8jRCi3LjR9-mkpKKqCOOsrtJUvZ_aOQkeWjl4u1X-U1Iid7LlRv7JljvZklKZZKfFq_0ipAzvFrwM2sIuuvWgozTO_of4Bo-mj6M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1955047465</pqid></control><display><type>article</type><title>Microstructure and nanomechanical properties of pulsed excimer laser deposited DLC:Ag films: Enhanced nanotribological response</title><source>Access via ScienceDirect (Elsevier)</source><creator>Constantinou, M. ; Pervolaraki, M. ; Nikolaou, P. ; Prouskas, C. ; Patsalas, P. ; Kelires, P. ; Giapintzakis, J. ; Constantinides, G.</creator><creatorcontrib>Constantinou, M. ; Pervolaraki, M. ; Nikolaou, P. ; Prouskas, C. ; Patsalas, P. ; Kelires, P. ; Giapintzakis, J. ; Constantinides, G.</creatorcontrib><description>Diamond-like carbon:silver (DLC:Ag) thin films, with metal contents as high as 16.8at.%, have been deposited on silicon substrates using pulsed excimer laser deposition; the produced DLC:Ag films sustain a substantial sp3 content (36%) in the DLC matrix even for the highest Ag content (~16.8at.%), in contrast to previous reports. The morphological, topographical, crystallographic, compositional and mechanical/tribological characteristics of the films have been studied using scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and nanoindentation/nanoscratch tests, respectively. The low miscibility between carbon and silver leads to a nanocomposite material that exhibits a reduced elastic modulus and hardness that scale inversely with the silver content. The mechanical capacity reduction is attributed to the incorporation of the soft/compliant silver phase and the subsequent graphitization of the amorphous carbon matrix, as quantified through XPS. This mechanical softening response, however, is coupled with an increased ductility and an enhanced tribomechanical response (70% increase in the critical load to film failure), making this class of DLC-metal nanocomposites of great interest for protective coatings and other functional applications.
[Display omitted]
•PLD from sector target can yield high smoothness/low friction DLC:Ag nanocomposites.•Pulse excimer laser deposited DLC:Ag nanocomposites retain significant sp3%.•Graphitization leads to residual stress/hardness/elastic modulus reduction.•DLC:Ag8at.% nanocomposites, significantly enhance their tribological response.•High levels of Ag-doping can lead to detrimental nanomechanical effects.</description><identifier>ISSN: 0257-8972</identifier><identifier>EISSN: 1879-3347</identifier><identifier>DOI: 10.1016/j.surfcoat.2016.11.084</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Atomic force microscopy ; Crystallography ; Diamond like carbon film ; Diamond-like carbon films ; Graphitization ; Laser deposition ; Mechanical properties ; Microstructure ; Miscibility ; Modulus of elasticity ; Nanocomposite ; Nanocomposites ; Nanoindentation ; Nanomechanics ; Nanotribology ; Protective coatings ; Silicon substrates ; Silver ; Thin films ; Tribology ; X ray photoelectron spectroscopy ; X-ray diffraction</subject><ispartof>Surface & coatings technology, 2017-01, Vol.309, p.320-330</ispartof><rights>2016 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jan 15, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-dac9c367785da77769431d4ecbe06b4e9ef9bfc3b730aef40294ad974ed3a62c3</citedby><cites>FETCH-LOGICAL-c406t-dac9c367785da77769431d4ecbe06b4e9ef9bfc3b730aef40294ad974ed3a62c3</cites><orcidid>0000-0003-1979-5176</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.surfcoat.2016.11.084$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Constantinou, M.</creatorcontrib><creatorcontrib>Pervolaraki, M.</creatorcontrib><creatorcontrib>Nikolaou, P.</creatorcontrib><creatorcontrib>Prouskas, C.</creatorcontrib><creatorcontrib>Patsalas, P.</creatorcontrib><creatorcontrib>Kelires, P.</creatorcontrib><creatorcontrib>Giapintzakis, J.</creatorcontrib><creatorcontrib>Constantinides, G.</creatorcontrib><title>Microstructure and nanomechanical properties of pulsed excimer laser deposited DLC:Ag films: Enhanced nanotribological response</title><title>Surface & coatings technology</title><description>Diamond-like carbon:silver (DLC:Ag) thin films, with metal contents as high as 16.8at.%, have been deposited on silicon substrates using pulsed excimer laser deposition; the produced DLC:Ag films sustain a substantial sp3 content (36%) in the DLC matrix even for the highest Ag content (~16.8at.%), in contrast to previous reports. The morphological, topographical, crystallographic, compositional and mechanical/tribological characteristics of the films have been studied using scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and nanoindentation/nanoscratch tests, respectively. The low miscibility between carbon and silver leads to a nanocomposite material that exhibits a reduced elastic modulus and hardness that scale inversely with the silver content. The mechanical capacity reduction is attributed to the incorporation of the soft/compliant silver phase and the subsequent graphitization of the amorphous carbon matrix, as quantified through XPS. This mechanical softening response, however, is coupled with an increased ductility and an enhanced tribomechanical response (70% increase in the critical load to film failure), making this class of DLC-metal nanocomposites of great interest for protective coatings and other functional applications.
[Display omitted]
•PLD from sector target can yield high smoothness/low friction DLC:Ag nanocomposites.•Pulse excimer laser deposited DLC:Ag nanocomposites retain significant sp3%.•Graphitization leads to residual stress/hardness/elastic modulus reduction.•DLC:Ag8at.% nanocomposites, significantly enhance their tribological response.•High levels of Ag-doping can lead to detrimental nanomechanical effects.</description><subject>Atomic force microscopy</subject><subject>Crystallography</subject><subject>Diamond like carbon film</subject><subject>Diamond-like carbon films</subject><subject>Graphitization</subject><subject>Laser deposition</subject><subject>Mechanical properties</subject><subject>Microstructure</subject><subject>Miscibility</subject><subject>Modulus of elasticity</subject><subject>Nanocomposite</subject><subject>Nanocomposites</subject><subject>Nanoindentation</subject><subject>Nanomechanics</subject><subject>Nanotribology</subject><subject>Protective coatings</subject><subject>Silicon substrates</subject><subject>Silver</subject><subject>Thin films</subject><subject>Tribology</subject><subject>X ray photoelectron spectroscopy</subject><subject>X-ray diffraction</subject><issn>0257-8972</issn><issn>1879-3347</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAQhi0EEqXwF5Al5gQ7ceK6E6iUD6mIBWbLsS_FVRoH20Ew8ddxKcwsZ51195zeB6FzSnJKaH25ycPoW-1UzIvU55TmZMYO0ITOuMjKkvFDNCFFxbOZ4MUxOglhQwihXLAJ-nq02rsQ_ajj6AGr3uBe9W4L-lX1VqsOD94N4KOFgF2Lh7ELYDB8aLsFjzsVUjUwuGBj-r9ZLebXa9zabhvmeNkniIY9MnrbuM6tf6AewuD6AKfoqFWJePb7TtHL7fJ5cZ-tnu4eFterTDNSx8woLXRZcz6rjOKc14KV1DDQDZC6YSCgFU2ry4aXREHLSCGYMoIzMKWqC11O0cWem9K8jRCi3LjR9-mkpKKqCOOsrtJUvZ_aOQkeWjl4u1X-U1Iid7LlRv7JljvZklKZZKfFq_0ipAzvFrwM2sIuuvWgozTO_of4Bo-mj6M</recordid><startdate>20170115</startdate><enddate>20170115</enddate><creator>Constantinou, M.</creator><creator>Pervolaraki, M.</creator><creator>Nikolaou, P.</creator><creator>Prouskas, C.</creator><creator>Patsalas, P.</creator><creator>Kelires, P.</creator><creator>Giapintzakis, J.</creator><creator>Constantinides, G.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-1979-5176</orcidid></search><sort><creationdate>20170115</creationdate><title>Microstructure and nanomechanical properties of pulsed excimer laser deposited DLC:Ag films: Enhanced nanotribological response</title><author>Constantinou, M. ; Pervolaraki, M. ; Nikolaou, P. ; Prouskas, C. ; Patsalas, P. ; Kelires, P. ; Giapintzakis, J. ; Constantinides, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-dac9c367785da77769431d4ecbe06b4e9ef9bfc3b730aef40294ad974ed3a62c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Atomic force microscopy</topic><topic>Crystallography</topic><topic>Diamond like carbon film</topic><topic>Diamond-like carbon films</topic><topic>Graphitization</topic><topic>Laser deposition</topic><topic>Mechanical properties</topic><topic>Microstructure</topic><topic>Miscibility</topic><topic>Modulus of elasticity</topic><topic>Nanocomposite</topic><topic>Nanocomposites</topic><topic>Nanoindentation</topic><topic>Nanomechanics</topic><topic>Nanotribology</topic><topic>Protective coatings</topic><topic>Silicon substrates</topic><topic>Silver</topic><topic>Thin films</topic><topic>Tribology</topic><topic>X ray photoelectron spectroscopy</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Constantinou, M.</creatorcontrib><creatorcontrib>Pervolaraki, M.</creatorcontrib><creatorcontrib>Nikolaou, P.</creatorcontrib><creatorcontrib>Prouskas, C.</creatorcontrib><creatorcontrib>Patsalas, P.</creatorcontrib><creatorcontrib>Kelires, P.</creatorcontrib><creatorcontrib>Giapintzakis, J.</creatorcontrib><creatorcontrib>Constantinides, G.</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Surface & coatings technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Constantinou, M.</au><au>Pervolaraki, M.</au><au>Nikolaou, P.</au><au>Prouskas, C.</au><au>Patsalas, P.</au><au>Kelires, P.</au><au>Giapintzakis, J.</au><au>Constantinides, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microstructure and nanomechanical properties of pulsed excimer laser deposited DLC:Ag films: Enhanced nanotribological response</atitle><jtitle>Surface & coatings technology</jtitle><date>2017-01-15</date><risdate>2017</risdate><volume>309</volume><spage>320</spage><epage>330</epage><pages>320-330</pages><issn>0257-8972</issn><eissn>1879-3347</eissn><abstract>Diamond-like carbon:silver (DLC:Ag) thin films, with metal contents as high as 16.8at.%, have been deposited on silicon substrates using pulsed excimer laser deposition; the produced DLC:Ag films sustain a substantial sp3 content (36%) in the DLC matrix even for the highest Ag content (~16.8at.%), in contrast to previous reports. The morphological, topographical, crystallographic, compositional and mechanical/tribological characteristics of the films have been studied using scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and nanoindentation/nanoscratch tests, respectively. The low miscibility between carbon and silver leads to a nanocomposite material that exhibits a reduced elastic modulus and hardness that scale inversely with the silver content. The mechanical capacity reduction is attributed to the incorporation of the soft/compliant silver phase and the subsequent graphitization of the amorphous carbon matrix, as quantified through XPS. This mechanical softening response, however, is coupled with an increased ductility and an enhanced tribomechanical response (70% increase in the critical load to film failure), making this class of DLC-metal nanocomposites of great interest for protective coatings and other functional applications.
[Display omitted]
•PLD from sector target can yield high smoothness/low friction DLC:Ag nanocomposites.•Pulse excimer laser deposited DLC:Ag nanocomposites retain significant sp3%.•Graphitization leads to residual stress/hardness/elastic modulus reduction.•DLC:Ag8at.% nanocomposites, significantly enhance their tribological response.•High levels of Ag-doping can lead to detrimental nanomechanical effects.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.surfcoat.2016.11.084</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-1979-5176</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0257-8972 |
ispartof | Surface & coatings technology, 2017-01, Vol.309, p.320-330 |
issn | 0257-8972 1879-3347 |
language | eng |
recordid | cdi_proquest_journals_1955047465 |
source | Access via ScienceDirect (Elsevier) |
subjects | Atomic force microscopy Crystallography Diamond like carbon film Diamond-like carbon films Graphitization Laser deposition Mechanical properties Microstructure Miscibility Modulus of elasticity Nanocomposite Nanocomposites Nanoindentation Nanomechanics Nanotribology Protective coatings Silicon substrates Silver Thin films Tribology X ray photoelectron spectroscopy X-ray diffraction |
title | Microstructure and nanomechanical properties of pulsed excimer laser deposited DLC:Ag films: Enhanced nanotribological response |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T06%3A53%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microstructure%20and%20nanomechanical%20properties%20of%20pulsed%20excimer%20laser%20deposited%20DLC:Ag%20films:%20Enhanced%20nanotribological%20response&rft.jtitle=Surface%20&%20coatings%20technology&rft.au=Constantinou,%20M.&rft.date=2017-01-15&rft.volume=309&rft.spage=320&rft.epage=330&rft.pages=320-330&rft.issn=0257-8972&rft.eissn=1879-3347&rft_id=info:doi/10.1016/j.surfcoat.2016.11.084&rft_dat=%3Cproquest_cross%3E1955047465%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1955047465&rft_id=info:pmid/&rft_els_id=S0257897216312166&rfr_iscdi=true |