Comparison of seven portable Raman spectrometers: beryl as a case study

In this paper, a series of beryl varieties with the accent on emeralds was investigated using seven portable Raman spectrometers equipped mainly with 785‐ and 532‐nm excitation lasers. Additionally, one dual system and a new portable sequentially shifted excitation Raman spectrometer were applied. T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Raman spectroscopy 2017-10, Vol.48 (10), p.1289-1299
Hauptverfasser: Jehlička, Jan, Culka, Adam, Bersani, Danilo, Vandenabeele, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1299
container_issue 10
container_start_page 1289
container_title Journal of Raman spectroscopy
container_volume 48
creator Jehlička, Jan
Culka, Adam
Bersani, Danilo
Vandenabeele, Peter
description In this paper, a series of beryl varieties with the accent on emeralds was investigated using seven portable Raman spectrometers equipped mainly with 785‐ and 532‐nm excitation lasers. Additionally, one dual system and a new portable sequentially shifted excitation Raman spectrometer were applied. The advantage of using handheld instrumentation for investigations to be carried out outside the laboratory is well documented. For major part of beryls (emeralds and aquamarines), the most intense Raman bands are found at correct positions +/−2 to 4 cm−1 using all the instruments (with the exception of one). Unambiguous identification of beryls is ensured by obtaining the strong characteristic of Raman features (1070 and 686 cm−1) of the whole spectrum. Spectroscopic performance and differences existing between the instruments not only from the construction and ergonomic point of view are discussed. All the instruments tested EzRaman‐I Dual (Enwave Optronics), RaPort (EnSpectr), FirstGuard (Rigaku), FirstDefender XL and FirstDefender RM (Thermo Scientific), Inspector Raman (Delta Nu) and Bravo (Bruker) can be used for common gemmological and mineralogical work in situ. Two instruments (the RaPort and the sequentially shifted excitation Raman spectrometer Bravo) allow recording excellent quality Raman spectra comparable with laboratory dispersive Raman microspectrometers. Copyright © 2017 John Wiley & Sons, Ltd. Beryl varieties such as emeralds (including synthetic) and aquamarines were investigated using seven portable Raman spectrometers equipped with 785 and 532 nm as well as a sequentially shifted excitation lasers. Spectroscopic performance and ergonomics of individual instrument are discussed.
doi_str_mv 10.1002/jrs.5214
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1954908201</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1954908201</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4304-9c1d8930daf5c112c3e14a597a31ace3d8d295538759c4b55639a6c1f31a3f273</originalsourceid><addsrcrecordid>eNp10FFLwzAQwPEgCs4p-BECvvjSedckbeObDJ3KQJj6HLL0ChttU5NO6bdf53z16R7uxx38GbtGmCFAercNcaZSlCdsgqDzRCqlTtkERJ4nIIvsnF3EuAUArTOcsMXcN50Nm-hb7ise6Zta3vnQ23VNfGUb2_LYkeuDb6inEO_5msJQcxu55c5G4rHflcMlO6tsHenqb07Z59Pjx_w5Wb4tXuYPy8RJATLRDstCCyhtpRxi6gShtErnVqB1JMqiTLVSosiVdnKtVCa0zRxW41pUaS6m7OZ4twv-a0exN1u_C-340qBWUkORAo7q9qhc8DEGqkwXNo0Ng0Ewh0xmzGQOmUaaHOnPpqbhX2deV--_fg8bZmfZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1954908201</pqid></control><display><type>article</type><title>Comparison of seven portable Raman spectrometers: beryl as a case study</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Jehlička, Jan ; Culka, Adam ; Bersani, Danilo ; Vandenabeele, Peter</creator><creatorcontrib>Jehlička, Jan ; Culka, Adam ; Bersani, Danilo ; Vandenabeele, Peter</creatorcontrib><description>In this paper, a series of beryl varieties with the accent on emeralds was investigated using seven portable Raman spectrometers equipped mainly with 785‐ and 532‐nm excitation lasers. Additionally, one dual system and a new portable sequentially shifted excitation Raman spectrometer were applied. The advantage of using handheld instrumentation for investigations to be carried out outside the laboratory is well documented. For major part of beryls (emeralds and aquamarines), the most intense Raman bands are found at correct positions +/−2 to 4 cm−1 using all the instruments (with the exception of one). Unambiguous identification of beryls is ensured by obtaining the strong characteristic of Raman features (1070 and 686 cm−1) of the whole spectrum. Spectroscopic performance and differences existing between the instruments not only from the construction and ergonomic point of view are discussed. All the instruments tested EzRaman‐I Dual (Enwave Optronics), RaPort (EnSpectr), FirstGuard (Rigaku), FirstDefender XL and FirstDefender RM (Thermo Scientific), Inspector Raman (Delta Nu) and Bravo (Bruker) can be used for common gemmological and mineralogical work in situ. Two instruments (the RaPort and the sequentially shifted excitation Raman spectrometer Bravo) allow recording excellent quality Raman spectra comparable with laboratory dispersive Raman microspectrometers. Copyright © 2017 John Wiley &amp; Sons, Ltd. Beryl varieties such as emeralds (including synthetic) and aquamarines were investigated using seven portable Raman spectrometers equipped with 785 and 532 nm as well as a sequentially shifted excitation lasers. Spectroscopic performance and ergonomics of individual instrument are discussed.</description><identifier>ISSN: 0377-0486</identifier><identifier>EISSN: 1097-4555</identifier><identifier>DOI: 10.1002/jrs.5214</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>aquamarine ; beryl ; Beryllium aluminum silicates ; Case studies ; emerald ; Excitation spectra ; Instrumentation ; Laboratories ; Lasers ; mobile Raman spectroscopy ; Portability ; Raman spectra ; Raman spectroscopy ; Spectrometers</subject><ispartof>Journal of Raman spectroscopy, 2017-10, Vol.48 (10), p.1289-1299</ispartof><rights>Copyright © 2017 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4304-9c1d8930daf5c112c3e14a597a31ace3d8d295538759c4b55639a6c1f31a3f273</citedby><cites>FETCH-LOGICAL-c4304-9c1d8930daf5c112c3e14a597a31ace3d8d295538759c4b55639a6c1f31a3f273</cites><orcidid>0000-0002-1861-070X ; 0000-0001-5285-9835 ; 0000-0002-4294-876X ; 0000-0002-8026-983X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjrs.5214$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjrs.5214$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Jehlička, Jan</creatorcontrib><creatorcontrib>Culka, Adam</creatorcontrib><creatorcontrib>Bersani, Danilo</creatorcontrib><creatorcontrib>Vandenabeele, Peter</creatorcontrib><title>Comparison of seven portable Raman spectrometers: beryl as a case study</title><title>Journal of Raman spectroscopy</title><description>In this paper, a series of beryl varieties with the accent on emeralds was investigated using seven portable Raman spectrometers equipped mainly with 785‐ and 532‐nm excitation lasers. Additionally, one dual system and a new portable sequentially shifted excitation Raman spectrometer were applied. The advantage of using handheld instrumentation for investigations to be carried out outside the laboratory is well documented. For major part of beryls (emeralds and aquamarines), the most intense Raman bands are found at correct positions +/−2 to 4 cm−1 using all the instruments (with the exception of one). Unambiguous identification of beryls is ensured by obtaining the strong characteristic of Raman features (1070 and 686 cm−1) of the whole spectrum. Spectroscopic performance and differences existing between the instruments not only from the construction and ergonomic point of view are discussed. All the instruments tested EzRaman‐I Dual (Enwave Optronics), RaPort (EnSpectr), FirstGuard (Rigaku), FirstDefender XL and FirstDefender RM (Thermo Scientific), Inspector Raman (Delta Nu) and Bravo (Bruker) can be used for common gemmological and mineralogical work in situ. Two instruments (the RaPort and the sequentially shifted excitation Raman spectrometer Bravo) allow recording excellent quality Raman spectra comparable with laboratory dispersive Raman microspectrometers. Copyright © 2017 John Wiley &amp; Sons, Ltd. Beryl varieties such as emeralds (including synthetic) and aquamarines were investigated using seven portable Raman spectrometers equipped with 785 and 532 nm as well as a sequentially shifted excitation lasers. Spectroscopic performance and ergonomics of individual instrument are discussed.</description><subject>aquamarine</subject><subject>beryl</subject><subject>Beryllium aluminum silicates</subject><subject>Case studies</subject><subject>emerald</subject><subject>Excitation spectra</subject><subject>Instrumentation</subject><subject>Laboratories</subject><subject>Lasers</subject><subject>mobile Raman spectroscopy</subject><subject>Portability</subject><subject>Raman spectra</subject><subject>Raman spectroscopy</subject><subject>Spectrometers</subject><issn>0377-0486</issn><issn>1097-4555</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp10FFLwzAQwPEgCs4p-BECvvjSedckbeObDJ3KQJj6HLL0ChttU5NO6bdf53z16R7uxx38GbtGmCFAercNcaZSlCdsgqDzRCqlTtkERJ4nIIvsnF3EuAUArTOcsMXcN50Nm-hb7ise6Zta3vnQ23VNfGUb2_LYkeuDb6inEO_5msJQcxu55c5G4rHflcMlO6tsHenqb07Z59Pjx_w5Wb4tXuYPy8RJATLRDstCCyhtpRxi6gShtErnVqB1JMqiTLVSosiVdnKtVCa0zRxW41pUaS6m7OZ4twv-a0exN1u_C-340qBWUkORAo7q9qhc8DEGqkwXNo0Ng0Ewh0xmzGQOmUaaHOnPpqbhX2deV--_fg8bZmfZ</recordid><startdate>201710</startdate><enddate>201710</enddate><creator>Jehlička, Jan</creator><creator>Culka, Adam</creator><creator>Bersani, Danilo</creator><creator>Vandenabeele, Peter</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0002-1861-070X</orcidid><orcidid>https://orcid.org/0000-0001-5285-9835</orcidid><orcidid>https://orcid.org/0000-0002-4294-876X</orcidid><orcidid>https://orcid.org/0000-0002-8026-983X</orcidid></search><sort><creationdate>201710</creationdate><title>Comparison of seven portable Raman spectrometers: beryl as a case study</title><author>Jehlička, Jan ; Culka, Adam ; Bersani, Danilo ; Vandenabeele, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4304-9c1d8930daf5c112c3e14a597a31ace3d8d295538759c4b55639a6c1f31a3f273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>aquamarine</topic><topic>beryl</topic><topic>Beryllium aluminum silicates</topic><topic>Case studies</topic><topic>emerald</topic><topic>Excitation spectra</topic><topic>Instrumentation</topic><topic>Laboratories</topic><topic>Lasers</topic><topic>mobile Raman spectroscopy</topic><topic>Portability</topic><topic>Raman spectra</topic><topic>Raman spectroscopy</topic><topic>Spectrometers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jehlička, Jan</creatorcontrib><creatorcontrib>Culka, Adam</creatorcontrib><creatorcontrib>Bersani, Danilo</creatorcontrib><creatorcontrib>Vandenabeele, Peter</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Journal of Raman spectroscopy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jehlička, Jan</au><au>Culka, Adam</au><au>Bersani, Danilo</au><au>Vandenabeele, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of seven portable Raman spectrometers: beryl as a case study</atitle><jtitle>Journal of Raman spectroscopy</jtitle><date>2017-10</date><risdate>2017</risdate><volume>48</volume><issue>10</issue><spage>1289</spage><epage>1299</epage><pages>1289-1299</pages><issn>0377-0486</issn><eissn>1097-4555</eissn><abstract>In this paper, a series of beryl varieties with the accent on emeralds was investigated using seven portable Raman spectrometers equipped mainly with 785‐ and 532‐nm excitation lasers. Additionally, one dual system and a new portable sequentially shifted excitation Raman spectrometer were applied. The advantage of using handheld instrumentation for investigations to be carried out outside the laboratory is well documented. For major part of beryls (emeralds and aquamarines), the most intense Raman bands are found at correct positions +/−2 to 4 cm−1 using all the instruments (with the exception of one). Unambiguous identification of beryls is ensured by obtaining the strong characteristic of Raman features (1070 and 686 cm−1) of the whole spectrum. Spectroscopic performance and differences existing between the instruments not only from the construction and ergonomic point of view are discussed. All the instruments tested EzRaman‐I Dual (Enwave Optronics), RaPort (EnSpectr), FirstGuard (Rigaku), FirstDefender XL and FirstDefender RM (Thermo Scientific), Inspector Raman (Delta Nu) and Bravo (Bruker) can be used for common gemmological and mineralogical work in situ. Two instruments (the RaPort and the sequentially shifted excitation Raman spectrometer Bravo) allow recording excellent quality Raman spectra comparable with laboratory dispersive Raman microspectrometers. Copyright © 2017 John Wiley &amp; Sons, Ltd. Beryl varieties such as emeralds (including synthetic) and aquamarines were investigated using seven portable Raman spectrometers equipped with 785 and 532 nm as well as a sequentially shifted excitation lasers. Spectroscopic performance and ergonomics of individual instrument are discussed.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/jrs.5214</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-1861-070X</orcidid><orcidid>https://orcid.org/0000-0001-5285-9835</orcidid><orcidid>https://orcid.org/0000-0002-4294-876X</orcidid><orcidid>https://orcid.org/0000-0002-8026-983X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0377-0486
ispartof Journal of Raman spectroscopy, 2017-10, Vol.48 (10), p.1289-1299
issn 0377-0486
1097-4555
language eng
recordid cdi_proquest_journals_1954908201
source Wiley Online Library Journals Frontfile Complete
subjects aquamarine
beryl
Beryllium aluminum silicates
Case studies
emerald
Excitation spectra
Instrumentation
Laboratories
Lasers
mobile Raman spectroscopy
Portability
Raman spectra
Raman spectroscopy
Spectrometers
title Comparison of seven portable Raman spectrometers: beryl as a case study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T06%3A50%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20seven%20portable%20Raman%20spectrometers:%20beryl%20as%20a%20case%20study&rft.jtitle=Journal%20of%20Raman%20spectroscopy&rft.au=Jehli%C4%8Dka,%20Jan&rft.date=2017-10&rft.volume=48&rft.issue=10&rft.spage=1289&rft.epage=1299&rft.pages=1289-1299&rft.issn=0377-0486&rft.eissn=1097-4555&rft_id=info:doi/10.1002/jrs.5214&rft_dat=%3Cproquest_cross%3E1954908201%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1954908201&rft_id=info:pmid/&rfr_iscdi=true