Microkinetic analysis of the epoxidation of styrene catalyzed by (porphyrin)Mn encapsulated in molecular squares

Microkinetic modeling showed that deactivation of (porphyrin)Mn catalysts adds significant complexity to the reaction kinetics. (Porphyrin)Mn catalysts encapsulated in molecular squares prevented deactivation of the catalyst, and were found to be the primary catalytic species in this system. Experim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of catalysis 2009-08, Vol.266 (1), p.145-155
Hauptverfasser: Oxford, Gloria A.E., Curet-Arana, Marı´a C., Majumder, Debarshi, Gurney, Richard W., Merlau, Melissa L., Nguyen, SonBinh T., Snurr, Randall Q., Broadbelt, Linda J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 155
container_issue 1
container_start_page 145
container_title Journal of catalysis
container_volume 266
creator Oxford, Gloria A.E.
Curet-Arana, Marı´a C.
Majumder, Debarshi
Gurney, Richard W.
Merlau, Melissa L.
Nguyen, SonBinh T.
Snurr, Randall Q.
Broadbelt, Linda J.
description Microkinetic modeling showed that deactivation of (porphyrin)Mn catalysts adds significant complexity to the reaction kinetics. (Porphyrin)Mn catalysts encapsulated in molecular squares prevented deactivation of the catalyst, and were found to be the primary catalytic species in this system. Experiments and microkinetic modeling were used to investigate the kinetics of styrene epoxidation catalyzed by (porphyrin)Mn using iodosylbenzene. While the kinetics follow the general form of Michaelis–Menten rate expressions as proposed in the literature, these simplified rate forms cannot capture all the details of the kinetics simultaneously, most notably catalyst deactivation. In contrast, a microkinetic model based on elementary steps, including deactivation via μ-oxo dimer formation and irreversible degradation, is able to capture experimental data over all reaction times and for different (porphyrin)Mn. Experimentally, we show that encapsulation of (porphyrin)Mn in a supramolecular cavity known as a molecular square significantly reduces catalyst deactivation, which is in agreement with previous experimental studies. Microkinetic modeling also captured the kinetics of this system. Net rate analysis revealed that production of epoxide was primarily due to encapsulated catalysts, and the model was able to quantify the difference in the concentration of deactivated catalyst with and without encapsulation.
doi_str_mv 10.1016/j.jcat.2009.06.003
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_195454619</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002195170900195X</els_id><sourcerecordid>1817819271</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-49ac53891c70a686bf9a33ef96437dffd3bec4c043789cd0ce73fdc8a47ac4913</originalsourceid><addsrcrecordid>eNp9kE1rHDEMhk1podtN_0BPplBoDzORx_Nl6KWEfkFCL-nZeDUy8XRiT2xv6eTX18uGHnsSkl7plR7G3gioBYj-cq5nNLluAFQNfQ0gn7GdAAVV06v2OdsBNKJSnRheslcpzQBCdN24Y-uNwxh-OU_ZITfeLFtyiQfL8x1xWsMfN5nsgj-VUt4ieeLFqugeaeKHjb9fQ1zvtuj8hxvPyaNZ03ExuXSd5_dhISxp5OnhaCKlC_bCmiXR66e4Zz-_fL69-lZd__j6_erTdYWyG3LVKoOdHJXAAUw_9gerjJRkVd_KYbJ2kgfCFqFko8IJkAZpJxxNOxhslZB79va8d43h4Ugp6zkcY_kvaaG6tmt7oYqoOYsKg5QiWb1Gd2_ipgXoE1g96xNYfQKrodcFbBl697TZJDSLjcajS_8mGzFKgHLYnn0866i8-dtR1Ald4UOTi4RZT8H9z-Yvj9WQ9A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195454619</pqid></control><display><type>article</type><title>Microkinetic analysis of the epoxidation of styrene catalyzed by (porphyrin)Mn encapsulated in molecular squares</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Oxford, Gloria A.E. ; Curet-Arana, Marı´a C. ; Majumder, Debarshi ; Gurney, Richard W. ; Merlau, Melissa L. ; Nguyen, SonBinh T. ; Snurr, Randall Q. ; Broadbelt, Linda J.</creator><creatorcontrib>Oxford, Gloria A.E. ; Curet-Arana, Marı´a C. ; Majumder, Debarshi ; Gurney, Richard W. ; Merlau, Melissa L. ; Nguyen, SonBinh T. ; Snurr, Randall Q. ; Broadbelt, Linda J.</creatorcontrib><description>Microkinetic modeling showed that deactivation of (porphyrin)Mn catalysts adds significant complexity to the reaction kinetics. (Porphyrin)Mn catalysts encapsulated in molecular squares prevented deactivation of the catalyst, and were found to be the primary catalytic species in this system. Experiments and microkinetic modeling were used to investigate the kinetics of styrene epoxidation catalyzed by (porphyrin)Mn using iodosylbenzene. While the kinetics follow the general form of Michaelis–Menten rate expressions as proposed in the literature, these simplified rate forms cannot capture all the details of the kinetics simultaneously, most notably catalyst deactivation. In contrast, a microkinetic model based on elementary steps, including deactivation via μ-oxo dimer formation and irreversible degradation, is able to capture experimental data over all reaction times and for different (porphyrin)Mn. Experimentally, we show that encapsulation of (porphyrin)Mn in a supramolecular cavity known as a molecular square significantly reduces catalyst deactivation, which is in agreement with previous experimental studies. Microkinetic modeling also captured the kinetics of this system. Net rate analysis revealed that production of epoxide was primarily due to encapsulated catalysts, and the model was able to quantify the difference in the concentration of deactivated catalyst with and without encapsulation.</description><identifier>ISSN: 0021-9517</identifier><identifier>EISSN: 1090-2694</identifier><identifier>DOI: 10.1016/j.jcat.2009.06.003</identifier><identifier>CODEN: JCTLA5</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>(Porphyrin)Mn ; Biomimetic catalysis ; Catalysis ; Chemistry ; Epoxidation ; Exact sciences and technology ; Experiments ; General and physical chemistry ; Kinetics ; Microkinetic modeling ; Molecular squares ; Oxidation ; Styrene ; Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><ispartof>Journal of catalysis, 2009-08, Vol.266 (1), p.145-155</ispartof><rights>2009 Elsevier Inc.</rights><rights>2009 INIST-CNRS</rights><rights>Copyright © 2009 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-49ac53891c70a686bf9a33ef96437dffd3bec4c043789cd0ce73fdc8a47ac4913</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcat.2009.06.003$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21830004$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Oxford, Gloria A.E.</creatorcontrib><creatorcontrib>Curet-Arana, Marı´a C.</creatorcontrib><creatorcontrib>Majumder, Debarshi</creatorcontrib><creatorcontrib>Gurney, Richard W.</creatorcontrib><creatorcontrib>Merlau, Melissa L.</creatorcontrib><creatorcontrib>Nguyen, SonBinh T.</creatorcontrib><creatorcontrib>Snurr, Randall Q.</creatorcontrib><creatorcontrib>Broadbelt, Linda J.</creatorcontrib><title>Microkinetic analysis of the epoxidation of styrene catalyzed by (porphyrin)Mn encapsulated in molecular squares</title><title>Journal of catalysis</title><description>Microkinetic modeling showed that deactivation of (porphyrin)Mn catalysts adds significant complexity to the reaction kinetics. (Porphyrin)Mn catalysts encapsulated in molecular squares prevented deactivation of the catalyst, and were found to be the primary catalytic species in this system. Experiments and microkinetic modeling were used to investigate the kinetics of styrene epoxidation catalyzed by (porphyrin)Mn using iodosylbenzene. While the kinetics follow the general form of Michaelis–Menten rate expressions as proposed in the literature, these simplified rate forms cannot capture all the details of the kinetics simultaneously, most notably catalyst deactivation. In contrast, a microkinetic model based on elementary steps, including deactivation via μ-oxo dimer formation and irreversible degradation, is able to capture experimental data over all reaction times and for different (porphyrin)Mn. Experimentally, we show that encapsulation of (porphyrin)Mn in a supramolecular cavity known as a molecular square significantly reduces catalyst deactivation, which is in agreement with previous experimental studies. Microkinetic modeling also captured the kinetics of this system. Net rate analysis revealed that production of epoxide was primarily due to encapsulated catalysts, and the model was able to quantify the difference in the concentration of deactivated catalyst with and without encapsulation.</description><subject>(Porphyrin)Mn</subject><subject>Biomimetic catalysis</subject><subject>Catalysis</subject><subject>Chemistry</subject><subject>Epoxidation</subject><subject>Exact sciences and technology</subject><subject>Experiments</subject><subject>General and physical chemistry</subject><subject>Kinetics</subject><subject>Microkinetic modeling</subject><subject>Molecular squares</subject><subject>Oxidation</subject><subject>Styrene</subject><subject>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><issn>0021-9517</issn><issn>1090-2694</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kE1rHDEMhk1podtN_0BPplBoDzORx_Nl6KWEfkFCL-nZeDUy8XRiT2xv6eTX18uGHnsSkl7plR7G3gioBYj-cq5nNLluAFQNfQ0gn7GdAAVV06v2OdsBNKJSnRheslcpzQBCdN24Y-uNwxh-OU_ZITfeLFtyiQfL8x1xWsMfN5nsgj-VUt4ieeLFqugeaeKHjb9fQ1zvtuj8hxvPyaNZ03ExuXSd5_dhISxp5OnhaCKlC_bCmiXR66e4Zz-_fL69-lZd__j6_erTdYWyG3LVKoOdHJXAAUw_9gerjJRkVd_KYbJ2kgfCFqFko8IJkAZpJxxNOxhslZB79va8d43h4Ugp6zkcY_kvaaG6tmt7oYqoOYsKg5QiWb1Gd2_ipgXoE1g96xNYfQKrodcFbBl697TZJDSLjcajS_8mGzFKgHLYnn0866i8-dtR1Ald4UOTi4RZT8H9z-Yvj9WQ9A</recordid><startdate>20090815</startdate><enddate>20090815</enddate><creator>Oxford, Gloria A.E.</creator><creator>Curet-Arana, Marı´a C.</creator><creator>Majumder, Debarshi</creator><creator>Gurney, Richard W.</creator><creator>Merlau, Melissa L.</creator><creator>Nguyen, SonBinh T.</creator><creator>Snurr, Randall Q.</creator><creator>Broadbelt, Linda J.</creator><general>Elsevier Inc</general><general>Elsevier</general><general>Elsevier BV</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20090815</creationdate><title>Microkinetic analysis of the epoxidation of styrene catalyzed by (porphyrin)Mn encapsulated in molecular squares</title><author>Oxford, Gloria A.E. ; Curet-Arana, Marı´a C. ; Majumder, Debarshi ; Gurney, Richard W. ; Merlau, Melissa L. ; Nguyen, SonBinh T. ; Snurr, Randall Q. ; Broadbelt, Linda J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-49ac53891c70a686bf9a33ef96437dffd3bec4c043789cd0ce73fdc8a47ac4913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>(Porphyrin)Mn</topic><topic>Biomimetic catalysis</topic><topic>Catalysis</topic><topic>Chemistry</topic><topic>Epoxidation</topic><topic>Exact sciences and technology</topic><topic>Experiments</topic><topic>General and physical chemistry</topic><topic>Kinetics</topic><topic>Microkinetic modeling</topic><topic>Molecular squares</topic><topic>Oxidation</topic><topic>Styrene</topic><topic>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oxford, Gloria A.E.</creatorcontrib><creatorcontrib>Curet-Arana, Marı´a C.</creatorcontrib><creatorcontrib>Majumder, Debarshi</creatorcontrib><creatorcontrib>Gurney, Richard W.</creatorcontrib><creatorcontrib>Merlau, Melissa L.</creatorcontrib><creatorcontrib>Nguyen, SonBinh T.</creatorcontrib><creatorcontrib>Snurr, Randall Q.</creatorcontrib><creatorcontrib>Broadbelt, Linda J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of catalysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oxford, Gloria A.E.</au><au>Curet-Arana, Marı´a C.</au><au>Majumder, Debarshi</au><au>Gurney, Richard W.</au><au>Merlau, Melissa L.</au><au>Nguyen, SonBinh T.</au><au>Snurr, Randall Q.</au><au>Broadbelt, Linda J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microkinetic analysis of the epoxidation of styrene catalyzed by (porphyrin)Mn encapsulated in molecular squares</atitle><jtitle>Journal of catalysis</jtitle><date>2009-08-15</date><risdate>2009</risdate><volume>266</volume><issue>1</issue><spage>145</spage><epage>155</epage><pages>145-155</pages><issn>0021-9517</issn><eissn>1090-2694</eissn><coden>JCTLA5</coden><abstract>Microkinetic modeling showed that deactivation of (porphyrin)Mn catalysts adds significant complexity to the reaction kinetics. (Porphyrin)Mn catalysts encapsulated in molecular squares prevented deactivation of the catalyst, and were found to be the primary catalytic species in this system. Experiments and microkinetic modeling were used to investigate the kinetics of styrene epoxidation catalyzed by (porphyrin)Mn using iodosylbenzene. While the kinetics follow the general form of Michaelis–Menten rate expressions as proposed in the literature, these simplified rate forms cannot capture all the details of the kinetics simultaneously, most notably catalyst deactivation. In contrast, a microkinetic model based on elementary steps, including deactivation via μ-oxo dimer formation and irreversible degradation, is able to capture experimental data over all reaction times and for different (porphyrin)Mn. Experimentally, we show that encapsulation of (porphyrin)Mn in a supramolecular cavity known as a molecular square significantly reduces catalyst deactivation, which is in agreement with previous experimental studies. Microkinetic modeling also captured the kinetics of this system. Net rate analysis revealed that production of epoxide was primarily due to encapsulated catalysts, and the model was able to quantify the difference in the concentration of deactivated catalyst with and without encapsulation.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcat.2009.06.003</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9517
ispartof Journal of catalysis, 2009-08, Vol.266 (1), p.145-155
issn 0021-9517
1090-2694
language eng
recordid cdi_proquest_journals_195454619
source Elsevier ScienceDirect Journals Complete
subjects (Porphyrin)Mn
Biomimetic catalysis
Catalysis
Chemistry
Epoxidation
Exact sciences and technology
Experiments
General and physical chemistry
Kinetics
Microkinetic modeling
Molecular squares
Oxidation
Styrene
Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry
title Microkinetic analysis of the epoxidation of styrene catalyzed by (porphyrin)Mn encapsulated in molecular squares
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T09%3A18%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microkinetic%20analysis%20of%20the%20epoxidation%20of%20styrene%20catalyzed%20by%20(porphyrin)Mn%20encapsulated%20in%20molecular%20squares&rft.jtitle=Journal%20of%20catalysis&rft.au=Oxford,%20Gloria%20A.E.&rft.date=2009-08-15&rft.volume=266&rft.issue=1&rft.spage=145&rft.epage=155&rft.pages=145-155&rft.issn=0021-9517&rft.eissn=1090-2694&rft.coden=JCTLA5&rft_id=info:doi/10.1016/j.jcat.2009.06.003&rft_dat=%3Cproquest_cross%3E1817819271%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=195454619&rft_id=info:pmid/&rft_els_id=S002195170900195X&rfr_iscdi=true