Activated takovite catalysts for partial hydrogenation of ethyne, propyne, and propadiene

The gas-phase hydrogenation of ethyne, propyne, and propadiene was investigated over partially reduced Ni–Al mixed oxides derived from takovite, a hydrotalcite-type compound. The unique attributes of the hydrotalcite route leads to more active and selective catalysts compared to conventional Ni/Al 2...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of catalysis 2008-10, Vol.259 (1), p.85-95
Hauptverfasser: Abelló, Sònia, Verboekend, Danny, Bridier, Blaise, Pérez-Ramírez, Javier
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 95
container_issue 1
container_start_page 85
container_title Journal of catalysis
container_volume 259
creator Abelló, Sònia
Verboekend, Danny
Bridier, Blaise
Pérez-Ramírez, Javier
description The gas-phase hydrogenation of ethyne, propyne, and propadiene was investigated over partially reduced Ni–Al mixed oxides derived from takovite, a hydrotalcite-type compound. The unique attributes of the hydrotalcite route leads to more active and selective catalysts compared to conventional Ni/Al 2O 3 prepared by impregnation. Tuning calcination and reduction conditions of the catalyst precursor is essential to optimize the hydrogenation performance. The best catalyst, calcined and reduced at 773 K, rendered stable propene yields up to ca. 65% and consisted of a Ni(Al)O x solid solution with 55% of the total bulk nickel in reduced form and surface enrichment by aluminum. Sintering of NiO and crystallization of NiAl 2O 4 at high calcination temperature induce lower activity. The alkyne or diene conversion increases with the percentage of metallic Ni in the samples, while an optimal degree of nickel reduction maximizes the monoalkene selectivity. Below the optimum, oligomer formation is favored and above the optimum, alkane production increases. A similar pattern was found for the H 2/HC ratio. The alkene selectivity experiences a dramatic increase in early stages of the reaction, which correlated with the build-up of C-containing species on the catalyst (sub-)surface. These selectivity-enhancing species are formed at specific reaction temperatures, highlighting the relevance of the testing procedure on assessing hydrogenation catalysts. The catalytic performance is strongly influenced by the hydrocarbon substrate. In contrast to propyne and propadiene, ethyne hydrogenation led to a C 2H 4 yield of only 6%.
doi_str_mv 10.1016/j.jcat.2008.07.012
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_195452612</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021951708002911</els_id><sourcerecordid>1574872771</sourcerecordid><originalsourceid>FETCH-LOGICAL-c460t-4da65c139d1dbd5e2d98f7f6f3ae068bc4ebafb5d669a42f5d84f7874cdb6e43</originalsourceid><addsrcrecordid>eNp9kE1rGzEQhkVpoK6bP9DTUuitux3JknYXejEhH4VAL7nkJGalUa2Ns3IlxeB_n7UdcuxpZuD9YB7GvnJoOHD9c2xGi6URAF0DbQNcfGALDj3UQvfyI1sACF73iref2OecRwDOleoW7HFtS9hjIVcVfIr7UKiak3B7yCVXPqZqh6kE3Fabg0vxL01YQpyq6Csqm8NEP6pdirvTgpM7HegCTfSFXXjcZrp8m0v2cHP9cHVX3_-5_X21vq-t1FBq6VAry1e9425wioTrO9967VdIoLvBShrQD8pp3aMUXrlO-rZrpXWDJrlasm_n2Ln53wvlYsb4kqa50fBeSSU0F7NInEU2xZwTebNL4RnTwXAwR4BmNEeA5gjQQGvgZPr-lozZ4tYnnGzI704BLbQKuln366yj-ct9oGSynQFYciGRLcbF8L-aV8DziHI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195452612</pqid></control><display><type>article</type><title>Activated takovite catalysts for partial hydrogenation of ethyne, propyne, and propadiene</title><source>ScienceDirect</source><creator>Abelló, Sònia ; Verboekend, Danny ; Bridier, Blaise ; Pérez-Ramírez, Javier</creator><creatorcontrib>Abelló, Sònia ; Verboekend, Danny ; Bridier, Blaise ; Pérez-Ramírez, Javier</creatorcontrib><description>The gas-phase hydrogenation of ethyne, propyne, and propadiene was investigated over partially reduced Ni–Al mixed oxides derived from takovite, a hydrotalcite-type compound. The unique attributes of the hydrotalcite route leads to more active and selective catalysts compared to conventional Ni/Al 2O 3 prepared by impregnation. Tuning calcination and reduction conditions of the catalyst precursor is essential to optimize the hydrogenation performance. The best catalyst, calcined and reduced at 773 K, rendered stable propene yields up to ca. 65% and consisted of a Ni(Al)O x solid solution with 55% of the total bulk nickel in reduced form and surface enrichment by aluminum. Sintering of NiO and crystallization of NiAl 2O 4 at high calcination temperature induce lower activity. The alkyne or diene conversion increases with the percentage of metallic Ni in the samples, while an optimal degree of nickel reduction maximizes the monoalkene selectivity. Below the optimum, oligomer formation is favored and above the optimum, alkane production increases. A similar pattern was found for the H 2/HC ratio. The alkene selectivity experiences a dramatic increase in early stages of the reaction, which correlated with the build-up of C-containing species on the catalyst (sub-)surface. These selectivity-enhancing species are formed at specific reaction temperatures, highlighting the relevance of the testing procedure on assessing hydrogenation catalysts. The catalytic performance is strongly influenced by the hydrocarbon substrate. In contrast to propyne and propadiene, ethyne hydrogenation led to a C 2H 4 yield of only 6%.</description><identifier>ISSN: 0021-9517</identifier><identifier>EISSN: 1090-2694</identifier><identifier>DOI: 10.1016/j.jcat.2008.07.012</identifier><identifier>CODEN: JCTLA5</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Alkene ; Alkyne ; Carbon deposits ; Catalysis ; Catalyst activation ; Catalysts ; Chemistry ; Comparative studies ; Crystallization ; Diene ; Exact sciences and technology ; General and physical chemistry ; Hydrotalcite ; Nickel ; Ni–Al oxides ; Operando spectroscopy ; Selective hydrogenation ; Takovite ; Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><ispartof>Journal of catalysis, 2008-10, Vol.259 (1), p.85-95</ispartof><rights>2008 Elsevier Inc.</rights><rights>2008 INIST-CNRS</rights><rights>Copyright © 2008 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c460t-4da65c139d1dbd5e2d98f7f6f3ae068bc4ebafb5d669a42f5d84f7874cdb6e43</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021951708002911$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20707508$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Abelló, Sònia</creatorcontrib><creatorcontrib>Verboekend, Danny</creatorcontrib><creatorcontrib>Bridier, Blaise</creatorcontrib><creatorcontrib>Pérez-Ramírez, Javier</creatorcontrib><title>Activated takovite catalysts for partial hydrogenation of ethyne, propyne, and propadiene</title><title>Journal of catalysis</title><description>The gas-phase hydrogenation of ethyne, propyne, and propadiene was investigated over partially reduced Ni–Al mixed oxides derived from takovite, a hydrotalcite-type compound. The unique attributes of the hydrotalcite route leads to more active and selective catalysts compared to conventional Ni/Al 2O 3 prepared by impregnation. Tuning calcination and reduction conditions of the catalyst precursor is essential to optimize the hydrogenation performance. The best catalyst, calcined and reduced at 773 K, rendered stable propene yields up to ca. 65% and consisted of a Ni(Al)O x solid solution with 55% of the total bulk nickel in reduced form and surface enrichment by aluminum. Sintering of NiO and crystallization of NiAl 2O 4 at high calcination temperature induce lower activity. The alkyne or diene conversion increases with the percentage of metallic Ni in the samples, while an optimal degree of nickel reduction maximizes the monoalkene selectivity. Below the optimum, oligomer formation is favored and above the optimum, alkane production increases. A similar pattern was found for the H 2/HC ratio. The alkene selectivity experiences a dramatic increase in early stages of the reaction, which correlated with the build-up of C-containing species on the catalyst (sub-)surface. These selectivity-enhancing species are formed at specific reaction temperatures, highlighting the relevance of the testing procedure on assessing hydrogenation catalysts. The catalytic performance is strongly influenced by the hydrocarbon substrate. In contrast to propyne and propadiene, ethyne hydrogenation led to a C 2H 4 yield of only 6%.</description><subject>Alkene</subject><subject>Alkyne</subject><subject>Carbon deposits</subject><subject>Catalysis</subject><subject>Catalyst activation</subject><subject>Catalysts</subject><subject>Chemistry</subject><subject>Comparative studies</subject><subject>Crystallization</subject><subject>Diene</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Hydrotalcite</subject><subject>Nickel</subject><subject>Ni–Al oxides</subject><subject>Operando spectroscopy</subject><subject>Selective hydrogenation</subject><subject>Takovite</subject><subject>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><issn>0021-9517</issn><issn>1090-2694</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9kE1rGzEQhkVpoK6bP9DTUuitux3JknYXejEhH4VAL7nkJGalUa2Ns3IlxeB_n7UdcuxpZuD9YB7GvnJoOHD9c2xGi6URAF0DbQNcfGALDj3UQvfyI1sACF73iref2OecRwDOleoW7HFtS9hjIVcVfIr7UKiak3B7yCVXPqZqh6kE3Fabg0vxL01YQpyq6Csqm8NEP6pdirvTgpM7HegCTfSFXXjcZrp8m0v2cHP9cHVX3_-5_X21vq-t1FBq6VAry1e9425wioTrO9967VdIoLvBShrQD8pp3aMUXrlO-rZrpXWDJrlasm_n2Ln53wvlYsb4kqa50fBeSSU0F7NInEU2xZwTebNL4RnTwXAwR4BmNEeA5gjQQGvgZPr-lozZ4tYnnGzI704BLbQKuln366yj-ct9oGSynQFYciGRLcbF8L-aV8DziHI</recordid><startdate>20081001</startdate><enddate>20081001</enddate><creator>Abelló, Sònia</creator><creator>Verboekend, Danny</creator><creator>Bridier, Blaise</creator><creator>Pérez-Ramírez, Javier</creator><general>Elsevier Inc</general><general>Elsevier</general><general>Elsevier BV</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20081001</creationdate><title>Activated takovite catalysts for partial hydrogenation of ethyne, propyne, and propadiene</title><author>Abelló, Sònia ; Verboekend, Danny ; Bridier, Blaise ; Pérez-Ramírez, Javier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c460t-4da65c139d1dbd5e2d98f7f6f3ae068bc4ebafb5d669a42f5d84f7874cdb6e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Alkene</topic><topic>Alkyne</topic><topic>Carbon deposits</topic><topic>Catalysis</topic><topic>Catalyst activation</topic><topic>Catalysts</topic><topic>Chemistry</topic><topic>Comparative studies</topic><topic>Crystallization</topic><topic>Diene</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Hydrotalcite</topic><topic>Nickel</topic><topic>Ni–Al oxides</topic><topic>Operando spectroscopy</topic><topic>Selective hydrogenation</topic><topic>Takovite</topic><topic>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abelló, Sònia</creatorcontrib><creatorcontrib>Verboekend, Danny</creatorcontrib><creatorcontrib>Bridier, Blaise</creatorcontrib><creatorcontrib>Pérez-Ramírez, Javier</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of catalysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abelló, Sònia</au><au>Verboekend, Danny</au><au>Bridier, Blaise</au><au>Pérez-Ramírez, Javier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Activated takovite catalysts for partial hydrogenation of ethyne, propyne, and propadiene</atitle><jtitle>Journal of catalysis</jtitle><date>2008-10-01</date><risdate>2008</risdate><volume>259</volume><issue>1</issue><spage>85</spage><epage>95</epage><pages>85-95</pages><issn>0021-9517</issn><eissn>1090-2694</eissn><coden>JCTLA5</coden><abstract>The gas-phase hydrogenation of ethyne, propyne, and propadiene was investigated over partially reduced Ni–Al mixed oxides derived from takovite, a hydrotalcite-type compound. The unique attributes of the hydrotalcite route leads to more active and selective catalysts compared to conventional Ni/Al 2O 3 prepared by impregnation. Tuning calcination and reduction conditions of the catalyst precursor is essential to optimize the hydrogenation performance. The best catalyst, calcined and reduced at 773 K, rendered stable propene yields up to ca. 65% and consisted of a Ni(Al)O x solid solution with 55% of the total bulk nickel in reduced form and surface enrichment by aluminum. Sintering of NiO and crystallization of NiAl 2O 4 at high calcination temperature induce lower activity. The alkyne or diene conversion increases with the percentage of metallic Ni in the samples, while an optimal degree of nickel reduction maximizes the monoalkene selectivity. Below the optimum, oligomer formation is favored and above the optimum, alkane production increases. A similar pattern was found for the H 2/HC ratio. The alkene selectivity experiences a dramatic increase in early stages of the reaction, which correlated with the build-up of C-containing species on the catalyst (sub-)surface. These selectivity-enhancing species are formed at specific reaction temperatures, highlighting the relevance of the testing procedure on assessing hydrogenation catalysts. The catalytic performance is strongly influenced by the hydrocarbon substrate. In contrast to propyne and propadiene, ethyne hydrogenation led to a C 2H 4 yield of only 6%.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcat.2008.07.012</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9517
ispartof Journal of catalysis, 2008-10, Vol.259 (1), p.85-95
issn 0021-9517
1090-2694
language eng
recordid cdi_proquest_journals_195452612
source ScienceDirect
subjects Alkene
Alkyne
Carbon deposits
Catalysis
Catalyst activation
Catalysts
Chemistry
Comparative studies
Crystallization
Diene
Exact sciences and technology
General and physical chemistry
Hydrotalcite
Nickel
Ni–Al oxides
Operando spectroscopy
Selective hydrogenation
Takovite
Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry
title Activated takovite catalysts for partial hydrogenation of ethyne, propyne, and propadiene
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T00%3A29%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Activated%20takovite%20catalysts%20for%20partial%20hydrogenation%20of%20ethyne,%20propyne,%20and%20propadiene&rft.jtitle=Journal%20of%20catalysis&rft.au=Abell%C3%B3,%20S%C3%B2nia&rft.date=2008-10-01&rft.volume=259&rft.issue=1&rft.spage=85&rft.epage=95&rft.pages=85-95&rft.issn=0021-9517&rft.eissn=1090-2694&rft.coden=JCTLA5&rft_id=info:doi/10.1016/j.jcat.2008.07.012&rft_dat=%3Cproquest_cross%3E1574872771%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=195452612&rft_id=info:pmid/&rft_els_id=S0021951708002911&rfr_iscdi=true