Towards understanding the bifunctional hydrodeoxygenation and aqueous phase reforming of glycerol
Glycerol is catalytically converted in aqueous phase over Pt/Al 2O 3 via bifunctional pathways involving dehydrogenation, dehydration and decarboxylation/decarbonylation. C C and C O bond hydrogenolysis does not occur. Kinetically coupled reactions of glycerol in water over bifunctional Pt/Al 2O 3 c...
Gespeichert in:
Veröffentlicht in: | Journal of catalysis 2010-02, Vol.269 (2), p.411-420 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 420 |
---|---|
container_issue | 2 |
container_start_page | 411 |
container_title | Journal of catalysis |
container_volume | 269 |
creator | Wawrzetz, A. Peng, B. Hrabar, A. Jentys, A. Lemonidou, A.A. Lercher, J.A. |
description | Glycerol is catalytically converted in aqueous phase over Pt/Al
2O
3 via bifunctional pathways involving dehydrogenation, dehydration and decarboxylation/decarbonylation. C
C and C
O bond hydrogenolysis does not occur.
Kinetically coupled reactions of glycerol in water over bifunctional Pt/Al
2O
3 catalysts are explored as a function of the Pt particle size and the reaction conditions. Detailed analysis of the reaction network shows that “reforming” and hydrodeoxygenation require the presence of a bifunctional catalyst, i.e., the presence of an acid–base and a metal function. The initial reaction steps are identified to be dehydrogenation and dehydration. The dehydrogenation of hydroxyl groups at primary carbon atoms is followed by decarbonylation and subsequent water gas shift or by disproportionation to the acid (and the alcohol) followed by decarboxylation. Hydrogenolysis of the C–O and C–C bonds in the alcohols does not occur under the present reaction conditions. Larger Pt particles favor hydrodeoxygenation over complete deconstruction to hydrogen and CO
2. |
doi_str_mv | 10.1016/j.jcat.2009.11.027 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_195448888</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021951709004072</els_id><sourcerecordid>1953413161</sourcerecordid><originalsourceid>FETCH-LOGICAL-c460t-e1e0722cb852b30b1e02c5a4883fd5820b584ea71294274efc13ff5ce9f45e0e3</originalsourceid><addsrcrecordid>eNp9kE9r3DAQxUVJoZttv0BPopCjnRmt5D_QSwlJWwjkkp6FLI92ZRxrK9lJ9ttXZkOOPYkR771582PsK0KJgNX1UA7WzKUAaEvEEkT9gW0QWihE1coLtgEQWLQK60_sMqUBAFGpZsPMY3gxsU98mXqKaTZT76c9nw_EO--Wyc4-TGbkh1MfQ0_h9bSnyayfPEu5-btQWBI_HkwiHsmF-LT6g-P78WQphvEz--jMmOjL27tlf-5uH29-FfcPP3_f_LgvrKxgLggJaiFs1yjR7aDLo7DKyKbZuV41AjrVSDI1ilaKWpKzuHNOWWqdVAS027Jv59xjDLlVmvUQlpi7J42tkjkoR22ZOItsDCnlvvoY_ZOJJ42gV5J60CtJvZLUiDqTzKart2STrBldNJP16d0phKyrSmHWfT_rKJ_57CnqZD1Nlnofyc66D_5_a_4BTgeLaQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195448888</pqid></control><display><type>article</type><title>Towards understanding the bifunctional hydrodeoxygenation and aqueous phase reforming of glycerol</title><source>Elsevier ScienceDirect Journals</source><creator>Wawrzetz, A. ; Peng, B. ; Hrabar, A. ; Jentys, A. ; Lemonidou, A.A. ; Lercher, J.A.</creator><creatorcontrib>Wawrzetz, A. ; Peng, B. ; Hrabar, A. ; Jentys, A. ; Lemonidou, A.A. ; Lercher, J.A.</creatorcontrib><description>Glycerol is catalytically converted in aqueous phase over Pt/Al
2O
3 via bifunctional pathways involving dehydrogenation, dehydration and decarboxylation/decarbonylation. C
C and C
O bond hydrogenolysis does not occur.
Kinetically coupled reactions of glycerol in water over bifunctional Pt/Al
2O
3 catalysts are explored as a function of the Pt particle size and the reaction conditions. Detailed analysis of the reaction network shows that “reforming” and hydrodeoxygenation require the presence of a bifunctional catalyst, i.e., the presence of an acid–base and a metal function. The initial reaction steps are identified to be dehydrogenation and dehydration. The dehydrogenation of hydroxyl groups at primary carbon atoms is followed by decarbonylation and subsequent water gas shift or by disproportionation to the acid (and the alcohol) followed by decarboxylation. Hydrogenolysis of the C–O and C–C bonds in the alcohols does not occur under the present reaction conditions. Larger Pt particles favor hydrodeoxygenation over complete deconstruction to hydrogen and CO
2.</description><identifier>ISSN: 0021-9517</identifier><identifier>EISSN: 1090-2694</identifier><identifier>DOI: 10.1016/j.jcat.2009.11.027</identifier><identifier>CODEN: JCTLA5</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Aqueous phase reforming ; Atoms & subatomic particles ; ATR-IR spectroscopy ; Catalysis ; Catalysts ; Chemical bonds ; Chemical reactions ; Chemistry ; Exact sciences and technology ; General and physical chemistry ; Glycerol ; Hydrodeoxygenation of alcohols ; Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry ; Water</subject><ispartof>Journal of catalysis, 2010-02, Vol.269 (2), p.411-420</ispartof><rights>2009 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2010 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c460t-e1e0722cb852b30b1e02c5a4883fd5820b584ea71294274efc13ff5ce9f45e0e3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcat.2009.11.027$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22476651$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wawrzetz, A.</creatorcontrib><creatorcontrib>Peng, B.</creatorcontrib><creatorcontrib>Hrabar, A.</creatorcontrib><creatorcontrib>Jentys, A.</creatorcontrib><creatorcontrib>Lemonidou, A.A.</creatorcontrib><creatorcontrib>Lercher, J.A.</creatorcontrib><title>Towards understanding the bifunctional hydrodeoxygenation and aqueous phase reforming of glycerol</title><title>Journal of catalysis</title><description>Glycerol is catalytically converted in aqueous phase over Pt/Al
2O
3 via bifunctional pathways involving dehydrogenation, dehydration and decarboxylation/decarbonylation. C
C and C
O bond hydrogenolysis does not occur.
Kinetically coupled reactions of glycerol in water over bifunctional Pt/Al
2O
3 catalysts are explored as a function of the Pt particle size and the reaction conditions. Detailed analysis of the reaction network shows that “reforming” and hydrodeoxygenation require the presence of a bifunctional catalyst, i.e., the presence of an acid–base and a metal function. The initial reaction steps are identified to be dehydrogenation and dehydration. The dehydrogenation of hydroxyl groups at primary carbon atoms is followed by decarbonylation and subsequent water gas shift or by disproportionation to the acid (and the alcohol) followed by decarboxylation. Hydrogenolysis of the C–O and C–C bonds in the alcohols does not occur under the present reaction conditions. Larger Pt particles favor hydrodeoxygenation over complete deconstruction to hydrogen and CO
2.</description><subject>Aqueous phase reforming</subject><subject>Atoms & subatomic particles</subject><subject>ATR-IR spectroscopy</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Chemical bonds</subject><subject>Chemical reactions</subject><subject>Chemistry</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Glycerol</subject><subject>Hydrodeoxygenation of alcohols</subject><subject>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><subject>Water</subject><issn>0021-9517</issn><issn>1090-2694</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kE9r3DAQxUVJoZttv0BPopCjnRmt5D_QSwlJWwjkkp6FLI92ZRxrK9lJ9ttXZkOOPYkR771582PsK0KJgNX1UA7WzKUAaEvEEkT9gW0QWihE1coLtgEQWLQK60_sMqUBAFGpZsPMY3gxsU98mXqKaTZT76c9nw_EO--Wyc4-TGbkh1MfQ0_h9bSnyayfPEu5-btQWBI_HkwiHsmF-LT6g-P78WQphvEz--jMmOjL27tlf-5uH29-FfcPP3_f_LgvrKxgLggJaiFs1yjR7aDLo7DKyKbZuV41AjrVSDI1ilaKWpKzuHNOWWqdVAS027Jv59xjDLlVmvUQlpi7J42tkjkoR22ZOItsDCnlvvoY_ZOJJ42gV5J60CtJvZLUiDqTzKart2STrBldNJP16d0phKyrSmHWfT_rKJ_57CnqZD1Nlnofyc66D_5_a_4BTgeLaQ</recordid><startdate>20100205</startdate><enddate>20100205</enddate><creator>Wawrzetz, A.</creator><creator>Peng, B.</creator><creator>Hrabar, A.</creator><creator>Jentys, A.</creator><creator>Lemonidou, A.A.</creator><creator>Lercher, J.A.</creator><general>Elsevier Inc</general><general>Elsevier</general><general>Elsevier BV</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20100205</creationdate><title>Towards understanding the bifunctional hydrodeoxygenation and aqueous phase reforming of glycerol</title><author>Wawrzetz, A. ; Peng, B. ; Hrabar, A. ; Jentys, A. ; Lemonidou, A.A. ; Lercher, J.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c460t-e1e0722cb852b30b1e02c5a4883fd5820b584ea71294274efc13ff5ce9f45e0e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Aqueous phase reforming</topic><topic>Atoms & subatomic particles</topic><topic>ATR-IR spectroscopy</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Chemical bonds</topic><topic>Chemical reactions</topic><topic>Chemistry</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Glycerol</topic><topic>Hydrodeoxygenation of alcohols</topic><topic>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</topic><topic>Water</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wawrzetz, A.</creatorcontrib><creatorcontrib>Peng, B.</creatorcontrib><creatorcontrib>Hrabar, A.</creatorcontrib><creatorcontrib>Jentys, A.</creatorcontrib><creatorcontrib>Lemonidou, A.A.</creatorcontrib><creatorcontrib>Lercher, J.A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of catalysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wawrzetz, A.</au><au>Peng, B.</au><au>Hrabar, A.</au><au>Jentys, A.</au><au>Lemonidou, A.A.</au><au>Lercher, J.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards understanding the bifunctional hydrodeoxygenation and aqueous phase reforming of glycerol</atitle><jtitle>Journal of catalysis</jtitle><date>2010-02-05</date><risdate>2010</risdate><volume>269</volume><issue>2</issue><spage>411</spage><epage>420</epage><pages>411-420</pages><issn>0021-9517</issn><eissn>1090-2694</eissn><coden>JCTLA5</coden><abstract>Glycerol is catalytically converted in aqueous phase over Pt/Al
2O
3 via bifunctional pathways involving dehydrogenation, dehydration and decarboxylation/decarbonylation. C
C and C
O bond hydrogenolysis does not occur.
Kinetically coupled reactions of glycerol in water over bifunctional Pt/Al
2O
3 catalysts are explored as a function of the Pt particle size and the reaction conditions. Detailed analysis of the reaction network shows that “reforming” and hydrodeoxygenation require the presence of a bifunctional catalyst, i.e., the presence of an acid–base and a metal function. The initial reaction steps are identified to be dehydrogenation and dehydration. The dehydrogenation of hydroxyl groups at primary carbon atoms is followed by decarbonylation and subsequent water gas shift or by disproportionation to the acid (and the alcohol) followed by decarboxylation. Hydrogenolysis of the C–O and C–C bonds in the alcohols does not occur under the present reaction conditions. Larger Pt particles favor hydrodeoxygenation over complete deconstruction to hydrogen and CO
2.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcat.2009.11.027</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9517 |
ispartof | Journal of catalysis, 2010-02, Vol.269 (2), p.411-420 |
issn | 0021-9517 1090-2694 |
language | eng |
recordid | cdi_proquest_journals_195448888 |
source | Elsevier ScienceDirect Journals |
subjects | Aqueous phase reforming Atoms & subatomic particles ATR-IR spectroscopy Catalysis Catalysts Chemical bonds Chemical reactions Chemistry Exact sciences and technology General and physical chemistry Glycerol Hydrodeoxygenation of alcohols Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry Water |
title | Towards understanding the bifunctional hydrodeoxygenation and aqueous phase reforming of glycerol |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T06%3A08%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20understanding%20the%20bifunctional%20hydrodeoxygenation%20and%20aqueous%20phase%20reforming%20of%20glycerol&rft.jtitle=Journal%20of%20catalysis&rft.au=Wawrzetz,%20A.&rft.date=2010-02-05&rft.volume=269&rft.issue=2&rft.spage=411&rft.epage=420&rft.pages=411-420&rft.issn=0021-9517&rft.eissn=1090-2694&rft.coden=JCTLA5&rft_id=info:doi/10.1016/j.jcat.2009.11.027&rft_dat=%3Cproquest_cross%3E1953413161%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=195448888&rft_id=info:pmid/&rft_els_id=S0021951709004072&rfr_iscdi=true |