Towards understanding the bifunctional hydrodeoxygenation and aqueous phase reforming of glycerol

Glycerol is catalytically converted in aqueous phase over Pt/Al 2O 3 via bifunctional pathways involving dehydrogenation, dehydration and decarboxylation/decarbonylation. C C and C O bond hydrogenolysis does not occur. Kinetically coupled reactions of glycerol in water over bifunctional Pt/Al 2O 3 c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of catalysis 2010-02, Vol.269 (2), p.411-420
Hauptverfasser: Wawrzetz, A., Peng, B., Hrabar, A., Jentys, A., Lemonidou, A.A., Lercher, J.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 420
container_issue 2
container_start_page 411
container_title Journal of catalysis
container_volume 269
creator Wawrzetz, A.
Peng, B.
Hrabar, A.
Jentys, A.
Lemonidou, A.A.
Lercher, J.A.
description Glycerol is catalytically converted in aqueous phase over Pt/Al 2O 3 via bifunctional pathways involving dehydrogenation, dehydration and decarboxylation/decarbonylation. C C and C O bond hydrogenolysis does not occur. Kinetically coupled reactions of glycerol in water over bifunctional Pt/Al 2O 3 catalysts are explored as a function of the Pt particle size and the reaction conditions. Detailed analysis of the reaction network shows that “reforming” and hydrodeoxygenation require the presence of a bifunctional catalyst, i.e., the presence of an acid–base and a metal function. The initial reaction steps are identified to be dehydrogenation and dehydration. The dehydrogenation of hydroxyl groups at primary carbon atoms is followed by decarbonylation and subsequent water gas shift or by disproportionation to the acid (and the alcohol) followed by decarboxylation. Hydrogenolysis of the C–O and C–C bonds in the alcohols does not occur under the present reaction conditions. Larger Pt particles favor hydrodeoxygenation over complete deconstruction to hydrogen and CO 2.
doi_str_mv 10.1016/j.jcat.2009.11.027
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_195448888</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021951709004072</els_id><sourcerecordid>1953413161</sourcerecordid><originalsourceid>FETCH-LOGICAL-c460t-e1e0722cb852b30b1e02c5a4883fd5820b584ea71294274efc13ff5ce9f45e0e3</originalsourceid><addsrcrecordid>eNp9kE9r3DAQxUVJoZttv0BPopCjnRmt5D_QSwlJWwjkkp6FLI92ZRxrK9lJ9ttXZkOOPYkR771582PsK0KJgNX1UA7WzKUAaEvEEkT9gW0QWihE1coLtgEQWLQK60_sMqUBAFGpZsPMY3gxsU98mXqKaTZT76c9nw_EO--Wyc4-TGbkh1MfQ0_h9bSnyayfPEu5-btQWBI_HkwiHsmF-LT6g-P78WQphvEz--jMmOjL27tlf-5uH29-FfcPP3_f_LgvrKxgLggJaiFs1yjR7aDLo7DKyKbZuV41AjrVSDI1ilaKWpKzuHNOWWqdVAS027Jv59xjDLlVmvUQlpi7J42tkjkoR22ZOItsDCnlvvoY_ZOJJ42gV5J60CtJvZLUiDqTzKart2STrBldNJP16d0phKyrSmHWfT_rKJ_57CnqZD1Nlnofyc66D_5_a_4BTgeLaQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195448888</pqid></control><display><type>article</type><title>Towards understanding the bifunctional hydrodeoxygenation and aqueous phase reforming of glycerol</title><source>Elsevier ScienceDirect Journals</source><creator>Wawrzetz, A. ; Peng, B. ; Hrabar, A. ; Jentys, A. ; Lemonidou, A.A. ; Lercher, J.A.</creator><creatorcontrib>Wawrzetz, A. ; Peng, B. ; Hrabar, A. ; Jentys, A. ; Lemonidou, A.A. ; Lercher, J.A.</creatorcontrib><description>Glycerol is catalytically converted in aqueous phase over Pt/Al 2O 3 via bifunctional pathways involving dehydrogenation, dehydration and decarboxylation/decarbonylation. C C and C O bond hydrogenolysis does not occur. Kinetically coupled reactions of glycerol in water over bifunctional Pt/Al 2O 3 catalysts are explored as a function of the Pt particle size and the reaction conditions. Detailed analysis of the reaction network shows that “reforming” and hydrodeoxygenation require the presence of a bifunctional catalyst, i.e., the presence of an acid–base and a metal function. The initial reaction steps are identified to be dehydrogenation and dehydration. The dehydrogenation of hydroxyl groups at primary carbon atoms is followed by decarbonylation and subsequent water gas shift or by disproportionation to the acid (and the alcohol) followed by decarboxylation. Hydrogenolysis of the C–O and C–C bonds in the alcohols does not occur under the present reaction conditions. Larger Pt particles favor hydrodeoxygenation over complete deconstruction to hydrogen and CO 2.</description><identifier>ISSN: 0021-9517</identifier><identifier>EISSN: 1090-2694</identifier><identifier>DOI: 10.1016/j.jcat.2009.11.027</identifier><identifier>CODEN: JCTLA5</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Aqueous phase reforming ; Atoms &amp; subatomic particles ; ATR-IR spectroscopy ; Catalysis ; Catalysts ; Chemical bonds ; Chemical reactions ; Chemistry ; Exact sciences and technology ; General and physical chemistry ; Glycerol ; Hydrodeoxygenation of alcohols ; Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry ; Water</subject><ispartof>Journal of catalysis, 2010-02, Vol.269 (2), p.411-420</ispartof><rights>2009 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2010 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c460t-e1e0722cb852b30b1e02c5a4883fd5820b584ea71294274efc13ff5ce9f45e0e3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcat.2009.11.027$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22476651$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wawrzetz, A.</creatorcontrib><creatorcontrib>Peng, B.</creatorcontrib><creatorcontrib>Hrabar, A.</creatorcontrib><creatorcontrib>Jentys, A.</creatorcontrib><creatorcontrib>Lemonidou, A.A.</creatorcontrib><creatorcontrib>Lercher, J.A.</creatorcontrib><title>Towards understanding the bifunctional hydrodeoxygenation and aqueous phase reforming of glycerol</title><title>Journal of catalysis</title><description>Glycerol is catalytically converted in aqueous phase over Pt/Al 2O 3 via bifunctional pathways involving dehydrogenation, dehydration and decarboxylation/decarbonylation. C C and C O bond hydrogenolysis does not occur. Kinetically coupled reactions of glycerol in water over bifunctional Pt/Al 2O 3 catalysts are explored as a function of the Pt particle size and the reaction conditions. Detailed analysis of the reaction network shows that “reforming” and hydrodeoxygenation require the presence of a bifunctional catalyst, i.e., the presence of an acid–base and a metal function. The initial reaction steps are identified to be dehydrogenation and dehydration. The dehydrogenation of hydroxyl groups at primary carbon atoms is followed by decarbonylation and subsequent water gas shift or by disproportionation to the acid (and the alcohol) followed by decarboxylation. Hydrogenolysis of the C–O and C–C bonds in the alcohols does not occur under the present reaction conditions. Larger Pt particles favor hydrodeoxygenation over complete deconstruction to hydrogen and CO 2.</description><subject>Aqueous phase reforming</subject><subject>Atoms &amp; subatomic particles</subject><subject>ATR-IR spectroscopy</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Chemical bonds</subject><subject>Chemical reactions</subject><subject>Chemistry</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Glycerol</subject><subject>Hydrodeoxygenation of alcohols</subject><subject>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><subject>Water</subject><issn>0021-9517</issn><issn>1090-2694</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kE9r3DAQxUVJoZttv0BPopCjnRmt5D_QSwlJWwjkkp6FLI92ZRxrK9lJ9ttXZkOOPYkR771582PsK0KJgNX1UA7WzKUAaEvEEkT9gW0QWihE1coLtgEQWLQK60_sMqUBAFGpZsPMY3gxsU98mXqKaTZT76c9nw_EO--Wyc4-TGbkh1MfQ0_h9bSnyayfPEu5-btQWBI_HkwiHsmF-LT6g-P78WQphvEz--jMmOjL27tlf-5uH29-FfcPP3_f_LgvrKxgLggJaiFs1yjR7aDLo7DKyKbZuV41AjrVSDI1ilaKWpKzuHNOWWqdVAS027Jv59xjDLlVmvUQlpi7J42tkjkoR22ZOItsDCnlvvoY_ZOJJ42gV5J60CtJvZLUiDqTzKart2STrBldNJP16d0phKyrSmHWfT_rKJ_57CnqZD1Nlnofyc66D_5_a_4BTgeLaQ</recordid><startdate>20100205</startdate><enddate>20100205</enddate><creator>Wawrzetz, A.</creator><creator>Peng, B.</creator><creator>Hrabar, A.</creator><creator>Jentys, A.</creator><creator>Lemonidou, A.A.</creator><creator>Lercher, J.A.</creator><general>Elsevier Inc</general><general>Elsevier</general><general>Elsevier BV</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20100205</creationdate><title>Towards understanding the bifunctional hydrodeoxygenation and aqueous phase reforming of glycerol</title><author>Wawrzetz, A. ; Peng, B. ; Hrabar, A. ; Jentys, A. ; Lemonidou, A.A. ; Lercher, J.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c460t-e1e0722cb852b30b1e02c5a4883fd5820b584ea71294274efc13ff5ce9f45e0e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Aqueous phase reforming</topic><topic>Atoms &amp; subatomic particles</topic><topic>ATR-IR spectroscopy</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Chemical bonds</topic><topic>Chemical reactions</topic><topic>Chemistry</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Glycerol</topic><topic>Hydrodeoxygenation of alcohols</topic><topic>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</topic><topic>Water</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wawrzetz, A.</creatorcontrib><creatorcontrib>Peng, B.</creatorcontrib><creatorcontrib>Hrabar, A.</creatorcontrib><creatorcontrib>Jentys, A.</creatorcontrib><creatorcontrib>Lemonidou, A.A.</creatorcontrib><creatorcontrib>Lercher, J.A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of catalysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wawrzetz, A.</au><au>Peng, B.</au><au>Hrabar, A.</au><au>Jentys, A.</au><au>Lemonidou, A.A.</au><au>Lercher, J.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards understanding the bifunctional hydrodeoxygenation and aqueous phase reforming of glycerol</atitle><jtitle>Journal of catalysis</jtitle><date>2010-02-05</date><risdate>2010</risdate><volume>269</volume><issue>2</issue><spage>411</spage><epage>420</epage><pages>411-420</pages><issn>0021-9517</issn><eissn>1090-2694</eissn><coden>JCTLA5</coden><abstract>Glycerol is catalytically converted in aqueous phase over Pt/Al 2O 3 via bifunctional pathways involving dehydrogenation, dehydration and decarboxylation/decarbonylation. C C and C O bond hydrogenolysis does not occur. Kinetically coupled reactions of glycerol in water over bifunctional Pt/Al 2O 3 catalysts are explored as a function of the Pt particle size and the reaction conditions. Detailed analysis of the reaction network shows that “reforming” and hydrodeoxygenation require the presence of a bifunctional catalyst, i.e., the presence of an acid–base and a metal function. The initial reaction steps are identified to be dehydrogenation and dehydration. The dehydrogenation of hydroxyl groups at primary carbon atoms is followed by decarbonylation and subsequent water gas shift or by disproportionation to the acid (and the alcohol) followed by decarboxylation. Hydrogenolysis of the C–O and C–C bonds in the alcohols does not occur under the present reaction conditions. Larger Pt particles favor hydrodeoxygenation over complete deconstruction to hydrogen and CO 2.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcat.2009.11.027</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9517
ispartof Journal of catalysis, 2010-02, Vol.269 (2), p.411-420
issn 0021-9517
1090-2694
language eng
recordid cdi_proquest_journals_195448888
source Elsevier ScienceDirect Journals
subjects Aqueous phase reforming
Atoms & subatomic particles
ATR-IR spectroscopy
Catalysis
Catalysts
Chemical bonds
Chemical reactions
Chemistry
Exact sciences and technology
General and physical chemistry
Glycerol
Hydrodeoxygenation of alcohols
Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry
Water
title Towards understanding the bifunctional hydrodeoxygenation and aqueous phase reforming of glycerol
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T06%3A08%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20understanding%20the%20bifunctional%20hydrodeoxygenation%20and%20aqueous%20phase%20reforming%20of%20glycerol&rft.jtitle=Journal%20of%20catalysis&rft.au=Wawrzetz,%20A.&rft.date=2010-02-05&rft.volume=269&rft.issue=2&rft.spage=411&rft.epage=420&rft.pages=411-420&rft.issn=0021-9517&rft.eissn=1090-2694&rft.coden=JCTLA5&rft_id=info:doi/10.1016/j.jcat.2009.11.027&rft_dat=%3Cproquest_cross%3E1953413161%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=195448888&rft_id=info:pmid/&rft_els_id=S0021951709004072&rfr_iscdi=true