Experimental investigation on laser-induced plasma ignition of hydrocarbon fuel in scramjet engine at takeover flight conditions
Laser-induced plasma ignition of an ethylene fuelled cavity is successfully conducted in a model scramjet engine combustor with dual cavities. The simulated flight condition corresponds to takeover flight Mach 4, with isolator entrance Mach number of 2.1, the total pressure of 0.65 MPa and stagnatio...
Gespeichert in:
Veröffentlicht in: | Acta astronautica 2017-09, Vol.138, p.79-84 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Laser-induced plasma ignition of an ethylene fuelled cavity is successfully conducted in a model scramjet engine combustor with dual cavities. The simulated flight condition corresponds to takeover flight Mach 4, with isolator entrance Mach number of 2.1, the total pressure of 0.65 MPa and stagnation temperature of 947 K. Ethylene is injected 35 mm upstream of cavity flameholder from four orifices with 2-mm-diameter. The 1064 nm laser beam, from a Q-switched Nd:YAG laser source running at 10 Hz and 940 mJ per pulse, is focused into cavity for ignition. High speed photography is used to capture the transient ignition process. The laser-induced gas breakdown, flame kernel generation and propagation are all recorded and ensuing stable supersonic combustion is established in cavity. The highly ionized plasma zone is almost round at starting, and then the surface of the flame kernel is wrinkled severely in 150 μs after the laser pulse due to the strong turbulence flow in cavity. The flame kernel is found rotating anti-clockwise and gradually moves upstream as the entrainment of circulation flow in cavity. The flame is stabilized at the corner of the cavity for about 200 μs, and then spreads from leading edge to trailing edge via the under part of shear layer to fully fill the entire cavity. The corner recirculation zone of cavity is of great importance for flame spreading. Eventually, a cavity shear-layer stabilized combustion is established in the supersonic flow roughly 2.9 ms after the laser pulse. Both the temporal evolution of normalized chemiluminescence intensity and normalized flame area show that the entire ignition process can be divided into four stages, which are referred as turbulent dissipation stage, combustion enhancement stage, reverting stage and combustion stabilization stage. The results show promising potentials of laser induced plasma for ignition in real scramjets.
•Laser-induced-plasma ignition is successfully performed in a scramjet combustor.•The corner recirculation zone of cavity is of great importance for flame spreading.•The entire ignition process can be divided into four stages. |
---|---|
ISSN: | 0094-5765 1879-2030 |
DOI: | 10.1016/j.actaastro.2017.05.036 |