Influence of velocity fluctuations on the Kelvin‐Helmholtz instability and its associated mass transport

Kelvin‐Helmholtz instability (KHI) and associated magnetic reconnection and diffusion processes provide plasma transport from solar wind into the magnetosphere. The efficiency of this transport depends on the magnetosheath and magnetospheric plasma and field properties at the vicinity of the magneto...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Space physics 2017-09, Vol.122 (9), p.9489-9512
Hauptverfasser: Nykyri, Katariina, Ma, Xuanye, Dimmock, Andrew, Foullon, Claire, Otto, Antonius, Osmane, Adnane
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9512
container_issue 9
container_start_page 9489
container_title Journal of geophysical research. Space physics
container_volume 122
creator Nykyri, Katariina
Ma, Xuanye
Dimmock, Andrew
Foullon, Claire
Otto, Antonius
Osmane, Adnane
description Kelvin‐Helmholtz instability (KHI) and associated magnetic reconnection and diffusion processes provide plasma transport from solar wind into the magnetosphere. The efficiency of this transport depends on the magnetosheath and magnetospheric plasma and field properties at the vicinity of the magnetopause. Our recent statistical study using data from the Time History of Events and Macroscale Interactions during Substorms spacecraft indicates that the amplitude of the magnetosheath velocity fluctuations perpendicular to the magnetopause can be substantial. We have performed a series of local macroscale 2.5‐dimensional magnetohydrodynamic simulations of the KHI during strongly northward interplanetary magnetic field and with the initial plasma parameters typical to the dayside magnetopause by perturbing the initial equilibrium with time‐dependent perpendicular velocity field fluctuations. The effect of the single‐mode and multimode seed spectrums at different frequencies and amplitudes is studied. The plasma transport in Kelvin‐Helmholtz vortices is quantified. The results show that when large‐amplitude, low‐frequency seed velocity fluctuations exist in the magnetosheath, the resulting KH waves grow faster, get larger in size, and can transport more plasma through magnetic boundary, resulting in diffusion coefficient of the order 109 m2/s. The relevance of these findings to the solar wind‐magnetosphere coupling is discussed. Plain Language Summary Solar wind is magnetized plasma that couples to the near‐Earth magnetic environment due processes that occur at the boundary of the Earth's magnetic shield (the magnetopause) and shocked solar wind plasma (magnetosheath). Solar wind properties are highly variable, and coupling efficiency depends on these solar wind and resulting magnetosheath properties. Giant plasma waves, some 20,000–40,000 km in wavelength (so called Kelvin‐Helmholtz waves), can be excited at the magnetopause by velocity shear. Like surfer waves in the ocean, these waves can break the Earth's magnetic shield and carry solar wind plasma through this magnetic barrier. The present paper shows that when large‐amplitude, low‐frequency seed velocity fluctuations exist in the magnetosheath, the resulting KH waves grow faster, get larger in size, and can transport more plasma through magnetic boundary. Key Points The seed spectrum properties of magnetosheath velocity fluctuations have impact on the Kelvin‐Helmholtz instability For larger‐amplitude seed,
doi_str_mv 10.1002/2017JA024374
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1953336639</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1953336639</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3889-414446efd8745e2b99ed8935788b1626131f03da7d2e643201e540211624c8e13</originalsourceid><addsrcrecordid>eNp9kM1KAzEQxxdRsNTefICAV1fztbvJsRTthwVB9Lyku7M0JU1qklbqyUfwGX0SU6rgybnMn5nf_IeZLLsk-IZgTG8pJtVsiClnFT_JepSUMpcc09NfzQQ-zwYhrHAKkUqk6GWrqe3MFmwDyHVoB8Y1Ou5RqjVxq6J2NiBnUVwCegCz0_br43MCZr10Jr4jbUNUC20OI8q2SMeAVAjJQ0Vo0TppFL2yYeN8vMjOOmUCDH5yP3u5v3seTfL543g6Gs7zhgkhc0445yV0rah4AXQhJbRCsqISYkFKWhJGOsxaVbUUSs7S2VCkM0nq8UYAYf3s6ui78e51CyHWK7f1Nq2siSwYY2XJZKKuj1TjXQgeunrj9Vr5fU1wfXho_fehCWdH_E0b2P_L1rPx07BgVSXZN2-dd4c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1953336639</pqid></control><display><type>article</type><title>Influence of velocity fluctuations on the Kelvin‐Helmholtz instability and its associated mass transport</title><source>Wiley Free Content</source><source>Wiley Online Library All Journals</source><creator>Nykyri, Katariina ; Ma, Xuanye ; Dimmock, Andrew ; Foullon, Claire ; Otto, Antonius ; Osmane, Adnane</creator><creatorcontrib>Nykyri, Katariina ; Ma, Xuanye ; Dimmock, Andrew ; Foullon, Claire ; Otto, Antonius ; Osmane, Adnane</creatorcontrib><description>Kelvin‐Helmholtz instability (KHI) and associated magnetic reconnection and diffusion processes provide plasma transport from solar wind into the magnetosphere. The efficiency of this transport depends on the magnetosheath and magnetospheric plasma and field properties at the vicinity of the magnetopause. Our recent statistical study using data from the Time History of Events and Macroscale Interactions during Substorms spacecraft indicates that the amplitude of the magnetosheath velocity fluctuations perpendicular to the magnetopause can be substantial. We have performed a series of local macroscale 2.5‐dimensional magnetohydrodynamic simulations of the KHI during strongly northward interplanetary magnetic field and with the initial plasma parameters typical to the dayside magnetopause by perturbing the initial equilibrium with time‐dependent perpendicular velocity field fluctuations. The effect of the single‐mode and multimode seed spectrums at different frequencies and amplitudes is studied. The plasma transport in Kelvin‐Helmholtz vortices is quantified. The results show that when large‐amplitude, low‐frequency seed velocity fluctuations exist in the magnetosheath, the resulting KH waves grow faster, get larger in size, and can transport more plasma through magnetic boundary, resulting in diffusion coefficient of the order 109 m2/s. The relevance of these findings to the solar wind‐magnetosphere coupling is discussed. Plain Language Summary Solar wind is magnetized plasma that couples to the near‐Earth magnetic environment due processes that occur at the boundary of the Earth's magnetic shield (the magnetopause) and shocked solar wind plasma (magnetosheath). Solar wind properties are highly variable, and coupling efficiency depends on these solar wind and resulting magnetosheath properties. Giant plasma waves, some 20,000–40,000 km in wavelength (so called Kelvin‐Helmholtz waves), can be excited at the magnetopause by velocity shear. Like surfer waves in the ocean, these waves can break the Earth's magnetic shield and carry solar wind plasma through this magnetic barrier. The present paper shows that when large‐amplitude, low‐frequency seed velocity fluctuations exist in the magnetosheath, the resulting KH waves grow faster, get larger in size, and can transport more plasma through magnetic boundary. Key Points The seed spectrum properties of magnetosheath velocity fluctuations have impact on the Kelvin‐Helmholtz instability For larger‐amplitude seed, KHI reaches the nonlinear stage sooner, and plasma transport starts earlier than for the smaller‐amplitude seed Most plasma transport occurs for seed spectrum including the frequency close to theoretical fastest growing KH mode</description><identifier>ISSN: 2169-9380</identifier><identifier>EISSN: 2169-9402</identifier><identifier>DOI: 10.1002/2017JA024374</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Charged particles ; Coupling ; Diffusion coefficient ; Diffusion processes ; Earth ; Fluctuations ; Fluid dynamics ; Fluid flow ; Instability ; Interplanetary magnetic field ; Kelvin-Helmholtz instability ; Kelvin-Helmholtz waves ; Magnetic fields ; Magnetic properties ; Magnetic reconnection ; Magnetohydrodynamic simulation ; Magnetopause ; Magnetosheath ; Magnetosphere ; Magnetospheres ; Magnetospheric plasma ; Magnetospheric-solar wind relationships ; Mass transport ; plasma transport ; Plasma waves ; Plasmas (physics) ; Solar wind ; Solar wind properties ; Solar wind-magnetosphere coupling ; Spacecraft ; Velocity ; Waves</subject><ispartof>Journal of geophysical research. Space physics, 2017-09, Vol.122 (9), p.9489-9512</ispartof><rights>2017. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3889-414446efd8745e2b99ed8935788b1626131f03da7d2e643201e540211624c8e13</citedby><cites>FETCH-LOGICAL-c3889-414446efd8745e2b99ed8935788b1626131f03da7d2e643201e540211624c8e13</cites><orcidid>0000-0003-2555-5953 ; 0000-0003-3942-1649 ; 0000-0003-1589-6711 ; 0000-0002-2532-9684 ; 0000-0003-2746-3382 ; 0000-0002-6905-9487</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2017JA024374$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2017JA024374$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,1432,27923,27924,45573,45574,46408,46832</link.rule.ids></links><search><creatorcontrib>Nykyri, Katariina</creatorcontrib><creatorcontrib>Ma, Xuanye</creatorcontrib><creatorcontrib>Dimmock, Andrew</creatorcontrib><creatorcontrib>Foullon, Claire</creatorcontrib><creatorcontrib>Otto, Antonius</creatorcontrib><creatorcontrib>Osmane, Adnane</creatorcontrib><title>Influence of velocity fluctuations on the Kelvin‐Helmholtz instability and its associated mass transport</title><title>Journal of geophysical research. Space physics</title><description>Kelvin‐Helmholtz instability (KHI) and associated magnetic reconnection and diffusion processes provide plasma transport from solar wind into the magnetosphere. The efficiency of this transport depends on the magnetosheath and magnetospheric plasma and field properties at the vicinity of the magnetopause. Our recent statistical study using data from the Time History of Events and Macroscale Interactions during Substorms spacecraft indicates that the amplitude of the magnetosheath velocity fluctuations perpendicular to the magnetopause can be substantial. We have performed a series of local macroscale 2.5‐dimensional magnetohydrodynamic simulations of the KHI during strongly northward interplanetary magnetic field and with the initial plasma parameters typical to the dayside magnetopause by perturbing the initial equilibrium with time‐dependent perpendicular velocity field fluctuations. The effect of the single‐mode and multimode seed spectrums at different frequencies and amplitudes is studied. The plasma transport in Kelvin‐Helmholtz vortices is quantified. The results show that when large‐amplitude, low‐frequency seed velocity fluctuations exist in the magnetosheath, the resulting KH waves grow faster, get larger in size, and can transport more plasma through magnetic boundary, resulting in diffusion coefficient of the order 109 m2/s. The relevance of these findings to the solar wind‐magnetosphere coupling is discussed. Plain Language Summary Solar wind is magnetized plasma that couples to the near‐Earth magnetic environment due processes that occur at the boundary of the Earth's magnetic shield (the magnetopause) and shocked solar wind plasma (magnetosheath). Solar wind properties are highly variable, and coupling efficiency depends on these solar wind and resulting magnetosheath properties. Giant plasma waves, some 20,000–40,000 km in wavelength (so called Kelvin‐Helmholtz waves), can be excited at the magnetopause by velocity shear. Like surfer waves in the ocean, these waves can break the Earth's magnetic shield and carry solar wind plasma through this magnetic barrier. The present paper shows that when large‐amplitude, low‐frequency seed velocity fluctuations exist in the magnetosheath, the resulting KH waves grow faster, get larger in size, and can transport more plasma through magnetic boundary. Key Points The seed spectrum properties of magnetosheath velocity fluctuations have impact on the Kelvin‐Helmholtz instability For larger‐amplitude seed, KHI reaches the nonlinear stage sooner, and plasma transport starts earlier than for the smaller‐amplitude seed Most plasma transport occurs for seed spectrum including the frequency close to theoretical fastest growing KH mode</description><subject>Charged particles</subject><subject>Coupling</subject><subject>Diffusion coefficient</subject><subject>Diffusion processes</subject><subject>Earth</subject><subject>Fluctuations</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Instability</subject><subject>Interplanetary magnetic field</subject><subject>Kelvin-Helmholtz instability</subject><subject>Kelvin-Helmholtz waves</subject><subject>Magnetic fields</subject><subject>Magnetic properties</subject><subject>Magnetic reconnection</subject><subject>Magnetohydrodynamic simulation</subject><subject>Magnetopause</subject><subject>Magnetosheath</subject><subject>Magnetosphere</subject><subject>Magnetospheres</subject><subject>Magnetospheric plasma</subject><subject>Magnetospheric-solar wind relationships</subject><subject>Mass transport</subject><subject>plasma transport</subject><subject>Plasma waves</subject><subject>Plasmas (physics)</subject><subject>Solar wind</subject><subject>Solar wind properties</subject><subject>Solar wind-magnetosphere coupling</subject><subject>Spacecraft</subject><subject>Velocity</subject><subject>Waves</subject><issn>2169-9380</issn><issn>2169-9402</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEQxxdRsNTefICAV1fztbvJsRTthwVB9Lyku7M0JU1qklbqyUfwGX0SU6rgybnMn5nf_IeZLLsk-IZgTG8pJtVsiClnFT_JepSUMpcc09NfzQQ-zwYhrHAKkUqk6GWrqe3MFmwDyHVoB8Y1Ou5RqjVxq6J2NiBnUVwCegCz0_br43MCZr10Jr4jbUNUC20OI8q2SMeAVAjJQ0Vo0TppFL2yYeN8vMjOOmUCDH5yP3u5v3seTfL543g6Gs7zhgkhc0445yV0rah4AXQhJbRCsqISYkFKWhJGOsxaVbUUSs7S2VCkM0nq8UYAYf3s6ui78e51CyHWK7f1Nq2siSwYY2XJZKKuj1TjXQgeunrj9Vr5fU1wfXho_fehCWdH_E0b2P_L1rPx07BgVSXZN2-dd4c</recordid><startdate>201709</startdate><enddate>201709</enddate><creator>Nykyri, Katariina</creator><creator>Ma, Xuanye</creator><creator>Dimmock, Andrew</creator><creator>Foullon, Claire</creator><creator>Otto, Antonius</creator><creator>Osmane, Adnane</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2555-5953</orcidid><orcidid>https://orcid.org/0000-0003-3942-1649</orcidid><orcidid>https://orcid.org/0000-0003-1589-6711</orcidid><orcidid>https://orcid.org/0000-0002-2532-9684</orcidid><orcidid>https://orcid.org/0000-0003-2746-3382</orcidid><orcidid>https://orcid.org/0000-0002-6905-9487</orcidid></search><sort><creationdate>201709</creationdate><title>Influence of velocity fluctuations on the Kelvin‐Helmholtz instability and its associated mass transport</title><author>Nykyri, Katariina ; Ma, Xuanye ; Dimmock, Andrew ; Foullon, Claire ; Otto, Antonius ; Osmane, Adnane</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3889-414446efd8745e2b99ed8935788b1626131f03da7d2e643201e540211624c8e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Charged particles</topic><topic>Coupling</topic><topic>Diffusion coefficient</topic><topic>Diffusion processes</topic><topic>Earth</topic><topic>Fluctuations</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Instability</topic><topic>Interplanetary magnetic field</topic><topic>Kelvin-Helmholtz instability</topic><topic>Kelvin-Helmholtz waves</topic><topic>Magnetic fields</topic><topic>Magnetic properties</topic><topic>Magnetic reconnection</topic><topic>Magnetohydrodynamic simulation</topic><topic>Magnetopause</topic><topic>Magnetosheath</topic><topic>Magnetosphere</topic><topic>Magnetospheres</topic><topic>Magnetospheric plasma</topic><topic>Magnetospheric-solar wind relationships</topic><topic>Mass transport</topic><topic>plasma transport</topic><topic>Plasma waves</topic><topic>Plasmas (physics)</topic><topic>Solar wind</topic><topic>Solar wind properties</topic><topic>Solar wind-magnetosphere coupling</topic><topic>Spacecraft</topic><topic>Velocity</topic><topic>Waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nykyri, Katariina</creatorcontrib><creatorcontrib>Ma, Xuanye</creatorcontrib><creatorcontrib>Dimmock, Andrew</creatorcontrib><creatorcontrib>Foullon, Claire</creatorcontrib><creatorcontrib>Otto, Antonius</creatorcontrib><creatorcontrib>Osmane, Adnane</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of geophysical research. Space physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nykyri, Katariina</au><au>Ma, Xuanye</au><au>Dimmock, Andrew</au><au>Foullon, Claire</au><au>Otto, Antonius</au><au>Osmane, Adnane</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of velocity fluctuations on the Kelvin‐Helmholtz instability and its associated mass transport</atitle><jtitle>Journal of geophysical research. Space physics</jtitle><date>2017-09</date><risdate>2017</risdate><volume>122</volume><issue>9</issue><spage>9489</spage><epage>9512</epage><pages>9489-9512</pages><issn>2169-9380</issn><eissn>2169-9402</eissn><abstract>Kelvin‐Helmholtz instability (KHI) and associated magnetic reconnection and diffusion processes provide plasma transport from solar wind into the magnetosphere. The efficiency of this transport depends on the magnetosheath and magnetospheric plasma and field properties at the vicinity of the magnetopause. Our recent statistical study using data from the Time History of Events and Macroscale Interactions during Substorms spacecraft indicates that the amplitude of the magnetosheath velocity fluctuations perpendicular to the magnetopause can be substantial. We have performed a series of local macroscale 2.5‐dimensional magnetohydrodynamic simulations of the KHI during strongly northward interplanetary magnetic field and with the initial plasma parameters typical to the dayside magnetopause by perturbing the initial equilibrium with time‐dependent perpendicular velocity field fluctuations. The effect of the single‐mode and multimode seed spectrums at different frequencies and amplitudes is studied. The plasma transport in Kelvin‐Helmholtz vortices is quantified. The results show that when large‐amplitude, low‐frequency seed velocity fluctuations exist in the magnetosheath, the resulting KH waves grow faster, get larger in size, and can transport more plasma through magnetic boundary, resulting in diffusion coefficient of the order 109 m2/s. The relevance of these findings to the solar wind‐magnetosphere coupling is discussed. Plain Language Summary Solar wind is magnetized plasma that couples to the near‐Earth magnetic environment due processes that occur at the boundary of the Earth's magnetic shield (the magnetopause) and shocked solar wind plasma (magnetosheath). Solar wind properties are highly variable, and coupling efficiency depends on these solar wind and resulting magnetosheath properties. Giant plasma waves, some 20,000–40,000 km in wavelength (so called Kelvin‐Helmholtz waves), can be excited at the magnetopause by velocity shear. Like surfer waves in the ocean, these waves can break the Earth's magnetic shield and carry solar wind plasma through this magnetic barrier. The present paper shows that when large‐amplitude, low‐frequency seed velocity fluctuations exist in the magnetosheath, the resulting KH waves grow faster, get larger in size, and can transport more plasma through magnetic boundary. Key Points The seed spectrum properties of magnetosheath velocity fluctuations have impact on the Kelvin‐Helmholtz instability For larger‐amplitude seed, KHI reaches the nonlinear stage sooner, and plasma transport starts earlier than for the smaller‐amplitude seed Most plasma transport occurs for seed spectrum including the frequency close to theoretical fastest growing KH mode</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2017JA024374</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0003-2555-5953</orcidid><orcidid>https://orcid.org/0000-0003-3942-1649</orcidid><orcidid>https://orcid.org/0000-0003-1589-6711</orcidid><orcidid>https://orcid.org/0000-0002-2532-9684</orcidid><orcidid>https://orcid.org/0000-0003-2746-3382</orcidid><orcidid>https://orcid.org/0000-0002-6905-9487</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-9380
ispartof Journal of geophysical research. Space physics, 2017-09, Vol.122 (9), p.9489-9512
issn 2169-9380
2169-9402
language eng
recordid cdi_proquest_journals_1953336639
source Wiley Free Content; Wiley Online Library All Journals
subjects Charged particles
Coupling
Diffusion coefficient
Diffusion processes
Earth
Fluctuations
Fluid dynamics
Fluid flow
Instability
Interplanetary magnetic field
Kelvin-Helmholtz instability
Kelvin-Helmholtz waves
Magnetic fields
Magnetic properties
Magnetic reconnection
Magnetohydrodynamic simulation
Magnetopause
Magnetosheath
Magnetosphere
Magnetospheres
Magnetospheric plasma
Magnetospheric-solar wind relationships
Mass transport
plasma transport
Plasma waves
Plasmas (physics)
Solar wind
Solar wind properties
Solar wind-magnetosphere coupling
Spacecraft
Velocity
Waves
title Influence of velocity fluctuations on the Kelvin‐Helmholtz instability and its associated mass transport
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T08%3A24%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20velocity%20fluctuations%20on%20the%20Kelvin%E2%80%90Helmholtz%20instability%20and%20its%20associated%20mass%20transport&rft.jtitle=Journal%20of%20geophysical%20research.%20Space%20physics&rft.au=Nykyri,%20Katariina&rft.date=2017-09&rft.volume=122&rft.issue=9&rft.spage=9489&rft.epage=9512&rft.pages=9489-9512&rft.issn=2169-9380&rft.eissn=2169-9402&rft_id=info:doi/10.1002/2017JA024374&rft_dat=%3Cproquest_cross%3E1953336639%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1953336639&rft_id=info:pmid/&rfr_iscdi=true