Structural constraints on protein self-processing in L-aspartate- -decarboxylase
Aspartate decarboxylase, which is translated as a pro-protein, undergoes intramolecular self-cleavage at Gly24-Ser25. We have determined the crystal structures of an unprocessed native precursor, in addition to Ala24 insertion, Ala26 insertion and Gly24[Right arrow]Ser, His11[Right arrow]Ala, Ser25[...
Gespeichert in:
Veröffentlicht in: | The EMBO journal 2003-12, Vol.22 (23), p.6193-6204 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6204 |
---|---|
container_issue | 23 |
container_start_page | 6193 |
container_title | The EMBO journal |
container_volume | 22 |
creator | Schmitzberger, F. |
description | Aspartate decarboxylase, which is translated as a pro-protein, undergoes intramolecular self-cleavage at Gly24-Ser25. We have determined the crystal structures of an unprocessed native precursor, in addition to Ala24 insertion, Ala26 insertion and Gly24[Right arrow]Ser, His11[Right arrow]Ala, Ser25[Right arrow]Ala, Ser25[Right arrow]Cys and Ser25[Right arrow]Thr mutants. Comparative analyses of the cleavage site reveal specific conformational constraints that govern self-processing and demonstrate that considerable rearrangement must occur. We suggest that Thr57 O[gamma] and a water molecule form an 'oxyanion hole' that likely stabilizes the proposed oxyoxazolidine intermediate. Thr57 and this water molecule are probable catalytic residues able to support acid-base catalysis. The conformational freedom in the loop preceding the cleavage site appears to play a determining role in the reaction. The molecular mechanism of self-processing, presented here, emphasizes the importance of stabilization of the oxyoxazolidine intermediate. Comparison of the structural features shows significant similarity to those in other self-processing systems, and suggests that models of the cleavage site of such enzymes based on Ser[Right arrow]Ala or Ser[Right arrow]Thr mutants alone may lead to erroneous interpretations of the mechanism. |
doi_str_mv | 10.1093/emboj/cdg575 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_195254242</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>509980901</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2115-f1d663b9fe17e5ca8d31cc4f3bac79f3f209ee073cd280fe61932807d4c114a23</originalsourceid><addsrcrecordid>eNpNkE1OwzAQhS0EEqWw4wARa0w9dhwnS1TxJ1VCCFhbjjOuUqVxsB2J3oazcDJSyoLVvBk9vTf6CLkEdgOsEgvc1n6zsM1aKnlEZpAXjHKm5PE_fUrOYtwwxmSpYEZeXlMYbRqD6TLr-5iCafsUM99nQ_AJ2z6L2Dk6LRZjbPt1Np1W1MTBhGQS0u8v2qA1ofafu85EPCcnznQRL_7mnLzf370tH-nq-eFpebuilgNI6qApClFXDkGhtKZsBFibO1EbqyonHGcVIlPCNrxkDguoxCRUk1uA3HAxJ1eH3Om1jxFj0hs_hn6q1FBJLnOe703XB5MNPsaATg-h3Zqw08D0npn-ZaYPzMQPQWti2A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195254242</pqid></control><display><type>article</type><title>Structural constraints on protein self-processing in L-aspartate- -decarboxylase</title><source>Wiley Free Content</source><source>Wiley Online Library Journals Frontfile Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature OA Free Journals</source><creator>Schmitzberger, F.</creator><creatorcontrib>Schmitzberger, F.</creatorcontrib><description>Aspartate decarboxylase, which is translated as a pro-protein, undergoes intramolecular self-cleavage at Gly24-Ser25. We have determined the crystal structures of an unprocessed native precursor, in addition to Ala24 insertion, Ala26 insertion and Gly24[Right arrow]Ser, His11[Right arrow]Ala, Ser25[Right arrow]Ala, Ser25[Right arrow]Cys and Ser25[Right arrow]Thr mutants. Comparative analyses of the cleavage site reveal specific conformational constraints that govern self-processing and demonstrate that considerable rearrangement must occur. We suggest that Thr57 O[gamma] and a water molecule form an 'oxyanion hole' that likely stabilizes the proposed oxyoxazolidine intermediate. Thr57 and this water molecule are probable catalytic residues able to support acid-base catalysis. The conformational freedom in the loop preceding the cleavage site appears to play a determining role in the reaction. The molecular mechanism of self-processing, presented here, emphasizes the importance of stabilization of the oxyoxazolidine intermediate. Comparison of the structural features shows significant similarity to those in other self-processing systems, and suggests that models of the cleavage site of such enzymes based on Ser[Right arrow]Ala or Ser[Right arrow]Thr mutants alone may lead to erroneous interpretations of the mechanism.</description><identifier>ISSN: 1460-2075</identifier><identifier>ISSN: 0261-4189</identifier><identifier>EISSN: 1460-2075</identifier><identifier>DOI: 10.1093/emboj/cdg575</identifier><identifier>CODEN: EMJODG</identifier><language>eng</language><publisher>New York: Springer Nature B.V</publisher><subject>Catalysis</subject><ispartof>The EMBO journal, 2003-12, Vol.22 (23), p.6193-6204</ispartof><rights>Copyright Oxford University Press(England) Dec 01, 2003</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2115-f1d663b9fe17e5ca8d31cc4f3bac79f3f209ee073cd280fe61932807d4c114a23</citedby><cites>FETCH-LOGICAL-c2115-f1d663b9fe17e5ca8d31cc4f3bac79f3f209ee073cd280fe61932807d4c114a23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Schmitzberger, F.</creatorcontrib><title>Structural constraints on protein self-processing in L-aspartate- -decarboxylase</title><title>The EMBO journal</title><description>Aspartate decarboxylase, which is translated as a pro-protein, undergoes intramolecular self-cleavage at Gly24-Ser25. We have determined the crystal structures of an unprocessed native precursor, in addition to Ala24 insertion, Ala26 insertion and Gly24[Right arrow]Ser, His11[Right arrow]Ala, Ser25[Right arrow]Ala, Ser25[Right arrow]Cys and Ser25[Right arrow]Thr mutants. Comparative analyses of the cleavage site reveal specific conformational constraints that govern self-processing and demonstrate that considerable rearrangement must occur. We suggest that Thr57 O[gamma] and a water molecule form an 'oxyanion hole' that likely stabilizes the proposed oxyoxazolidine intermediate. Thr57 and this water molecule are probable catalytic residues able to support acid-base catalysis. The conformational freedom in the loop preceding the cleavage site appears to play a determining role in the reaction. The molecular mechanism of self-processing, presented here, emphasizes the importance of stabilization of the oxyoxazolidine intermediate. Comparison of the structural features shows significant similarity to those in other self-processing systems, and suggests that models of the cleavage site of such enzymes based on Ser[Right arrow]Ala or Ser[Right arrow]Thr mutants alone may lead to erroneous interpretations of the mechanism.</description><subject>Catalysis</subject><issn>1460-2075</issn><issn>0261-4189</issn><issn>1460-2075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpNkE1OwzAQhS0EEqWw4wARa0w9dhwnS1TxJ1VCCFhbjjOuUqVxsB2J3oazcDJSyoLVvBk9vTf6CLkEdgOsEgvc1n6zsM1aKnlEZpAXjHKm5PE_fUrOYtwwxmSpYEZeXlMYbRqD6TLr-5iCafsUM99nQ_AJ2z6L2Dk6LRZjbPt1Np1W1MTBhGQS0u8v2qA1ofafu85EPCcnznQRL_7mnLzf370tH-nq-eFpebuilgNI6qApClFXDkGhtKZsBFibO1EbqyonHGcVIlPCNrxkDguoxCRUk1uA3HAxJ1eH3Om1jxFj0hs_hn6q1FBJLnOe703XB5MNPsaATg-h3Zqw08D0npn-ZaYPzMQPQWti2A</recordid><startdate>20031201</startdate><enddate>20031201</enddate><creator>Schmitzberger, F.</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope></search><sort><creationdate>20031201</creationdate><title>Structural constraints on protein self-processing in L-aspartate- -decarboxylase</title><author>Schmitzberger, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2115-f1d663b9fe17e5ca8d31cc4f3bac79f3f209ee073cd280fe61932807d4c114a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Catalysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schmitzberger, F.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><jtitle>The EMBO journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schmitzberger, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural constraints on protein self-processing in L-aspartate- -decarboxylase</atitle><jtitle>The EMBO journal</jtitle><date>2003-12-01</date><risdate>2003</risdate><volume>22</volume><issue>23</issue><spage>6193</spage><epage>6204</epage><pages>6193-6204</pages><issn>1460-2075</issn><issn>0261-4189</issn><eissn>1460-2075</eissn><coden>EMJODG</coden><abstract>Aspartate decarboxylase, which is translated as a pro-protein, undergoes intramolecular self-cleavage at Gly24-Ser25. We have determined the crystal structures of an unprocessed native precursor, in addition to Ala24 insertion, Ala26 insertion and Gly24[Right arrow]Ser, His11[Right arrow]Ala, Ser25[Right arrow]Ala, Ser25[Right arrow]Cys and Ser25[Right arrow]Thr mutants. Comparative analyses of the cleavage site reveal specific conformational constraints that govern self-processing and demonstrate that considerable rearrangement must occur. We suggest that Thr57 O[gamma] and a water molecule form an 'oxyanion hole' that likely stabilizes the proposed oxyoxazolidine intermediate. Thr57 and this water molecule are probable catalytic residues able to support acid-base catalysis. The conformational freedom in the loop preceding the cleavage site appears to play a determining role in the reaction. The molecular mechanism of self-processing, presented here, emphasizes the importance of stabilization of the oxyoxazolidine intermediate. Comparison of the structural features shows significant similarity to those in other self-processing systems, and suggests that models of the cleavage site of such enzymes based on Ser[Right arrow]Ala or Ser[Right arrow]Thr mutants alone may lead to erroneous interpretations of the mechanism.</abstract><cop>New York</cop><pub>Springer Nature B.V</pub><doi>10.1093/emboj/cdg575</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1460-2075 |
ispartof | The EMBO journal, 2003-12, Vol.22 (23), p.6193-6204 |
issn | 1460-2075 0261-4189 1460-2075 |
language | eng |
recordid | cdi_proquest_journals_195254242 |
source | Wiley Free Content; Wiley Online Library Journals Frontfile Complete; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature OA Free Journals |
subjects | Catalysis |
title | Structural constraints on protein self-processing in L-aspartate- -decarboxylase |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T09%3A37%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20constraints%20on%20protein%20self-processing%20in%20L-aspartate-%C2%A0-decarboxylase&rft.jtitle=The%20EMBO%20journal&rft.au=Schmitzberger,%20F.&rft.date=2003-12-01&rft.volume=22&rft.issue=23&rft.spage=6193&rft.epage=6204&rft.pages=6193-6204&rft.issn=1460-2075&rft.eissn=1460-2075&rft.coden=EMJODG&rft_id=info:doi/10.1093/emboj/cdg575&rft_dat=%3Cproquest_cross%3E509980901%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=195254242&rft_id=info:pmid/&rfr_iscdi=true |