A Multiscale Fabrication Approach to Microfluidic System Development
Microfluidic systems for analytical, medical, and sensing applications integrate optical or electrical readouts in lowcost, low-volume consumption systems. Embedding chemically functionalized templates with nanoscale topography within these devices links the scale at which molecular recognition/ sel...
Gespeichert in:
Veröffentlicht in: | Journal of manufacturing processes 2004, Vol.6 (1), p.88-96 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 96 |
---|---|
container_issue | 1 |
container_start_page | 88 |
container_title | Journal of manufacturing processes |
container_volume | 6 |
creator | Schmitz, T.L. Dagata, J.A. Dutterer, B. Sawyer, W. Gregory |
description | Microfluidic systems for analytical, medical, and sensing applications integrate optical or electrical readouts in lowcost, low-volume consumption systems. Embedding chemically functionalized templates with nanoscale topography within these devices links the scale at which molecular recognition/ self-organization occurs and the macroscopic layout of fluid channels, mixing volumes, and detection regions. Although the design of a platform that would meet the needs of all microfluidic experiments is a difficult undertaking, this paper provides a description of a flexure-based platform that may address generic requirements such as low cost, ease of manufacture, and repeatable alignment/sealing performance. Experimental results are provided for master replication in plastics by hot embossing and a microfluidic platform that orients 125 micrometer channels embossed in a poly(vinyl chloride) gasket to an array of high-speed machined channels. |
doi_str_mv | 10.1016/S1526-6125(04)70062-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_195250119</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1526612504700626</els_id><sourcerecordid>810409881</sourcerecordid><originalsourceid>FETCH-LOGICAL-c197t-d4850f50ff99faa0fe63786e1cd4d9e5019792ea92c43160063112a63d1436593</originalsourceid><addsrcrecordid>eNqFkEFLAzEQhYMoWKs_QVg86WE1k82mzUlKa1Vo8VA9h5jMYsp2d02yhf5701a8CgNzee_NvI-Qa6D3QEE8rKBkIhfAylvK70aUCpaLEzJgDFjOBYhTMviTnJOLENaUAuMUBmQ2yZZ9HV0wusZsrj-9Mzq6tskmXedbbb6y2GZLZ3xb1b2zzmSrXYi4yWa4xbrtNtjES3JW6Trg1e8eko_50_v0JV-8Pb9OJ4vcgBzF3PJxSas0lZSV1rRCUYzGAsFYbiWWNKkkQy2Z4QWI1KMAYFoUFnghSlkMyc0xN3323WOIat32vkknFciSpQDYi8qjKL0cgsdKdd5ttN8poGrPSx14qT0MRbk68FIi-R6PPkwNtg69CsZhY9A6jyYq27p_En4A68dweg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195250119</pqid></control><display><type>article</type><title>A Multiscale Fabrication Approach to Microfluidic System Development</title><source>Access via ScienceDirect (Elsevier)</source><creator>Schmitz, T.L. ; Dagata, J.A. ; Dutterer, B. ; Sawyer, W. Gregory</creator><creatorcontrib>Schmitz, T.L. ; Dagata, J.A. ; Dutterer, B. ; Sawyer, W. Gregory</creatorcontrib><description>Microfluidic systems for analytical, medical, and sensing applications integrate optical or electrical readouts in lowcost, low-volume consumption systems. Embedding chemically functionalized templates with nanoscale topography within these devices links the scale at which molecular recognition/ self-organization occurs and the macroscopic layout of fluid channels, mixing volumes, and detection regions. Although the design of a platform that would meet the needs of all microfluidic experiments is a difficult undertaking, this paper provides a description of a flexure-based platform that may address generic requirements such as low cost, ease of manufacture, and repeatable alignment/sealing performance. Experimental results are provided for master replication in plastics by hot embossing and a microfluidic platform that orients 125 micrometer channels embossed in a poly(vinyl chloride) gasket to an array of high-speed machined channels.</description><identifier>ISSN: 1526-6125</identifier><identifier>EISSN: 2212-4616</identifier><identifier>DOI: 10.1016/S1526-6125(04)70062-6</identifier><language>eng</language><publisher>Dearborn: Elsevier Ltd</publisher><subject>Design ; Flexure ; High speed machining ; Hot Embossing ; Laboratories ; Manufacturing ; Operations research ; Polymers ; Silicon wafers ; Studies ; Systems development</subject><ispartof>Journal of manufacturing processes, 2004, Vol.6 (1), p.88-96</ispartof><rights>2004 Society of Manufacturing Engineers</rights><rights>Copyright Society of Manufacturing Engineers 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c197t-d4850f50ff99faa0fe63786e1cd4d9e5019792ea92c43160063112a63d1436593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S1526-6125(04)70062-6$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,4024,27923,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Schmitz, T.L.</creatorcontrib><creatorcontrib>Dagata, J.A.</creatorcontrib><creatorcontrib>Dutterer, B.</creatorcontrib><creatorcontrib>Sawyer, W. Gregory</creatorcontrib><title>A Multiscale Fabrication Approach to Microfluidic System Development</title><title>Journal of manufacturing processes</title><description>Microfluidic systems for analytical, medical, and sensing applications integrate optical or electrical readouts in lowcost, low-volume consumption systems. Embedding chemically functionalized templates with nanoscale topography within these devices links the scale at which molecular recognition/ self-organization occurs and the macroscopic layout of fluid channels, mixing volumes, and detection regions. Although the design of a platform that would meet the needs of all microfluidic experiments is a difficult undertaking, this paper provides a description of a flexure-based platform that may address generic requirements such as low cost, ease of manufacture, and repeatable alignment/sealing performance. Experimental results are provided for master replication in plastics by hot embossing and a microfluidic platform that orients 125 micrometer channels embossed in a poly(vinyl chloride) gasket to an array of high-speed machined channels.</description><subject>Design</subject><subject>Flexure</subject><subject>High speed machining</subject><subject>Hot Embossing</subject><subject>Laboratories</subject><subject>Manufacturing</subject><subject>Operations research</subject><subject>Polymers</subject><subject>Silicon wafers</subject><subject>Studies</subject><subject>Systems development</subject><issn>1526-6125</issn><issn>2212-4616</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkEFLAzEQhYMoWKs_QVg86WE1k82mzUlKa1Vo8VA9h5jMYsp2d02yhf5701a8CgNzee_NvI-Qa6D3QEE8rKBkIhfAylvK70aUCpaLEzJgDFjOBYhTMviTnJOLENaUAuMUBmQ2yZZ9HV0wusZsrj-9Mzq6tskmXedbbb6y2GZLZ3xb1b2zzmSrXYi4yWa4xbrtNtjES3JW6Trg1e8eko_50_v0JV-8Pb9OJ4vcgBzF3PJxSas0lZSV1rRCUYzGAsFYbiWWNKkkQy2Z4QWI1KMAYFoUFnghSlkMyc0xN3323WOIat32vkknFciSpQDYi8qjKL0cgsdKdd5ttN8poGrPSx14qT0MRbk68FIi-R6PPkwNtg69CsZhY9A6jyYq27p_En4A68dweg</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Schmitz, T.L.</creator><creator>Dagata, J.A.</creator><creator>Dutterer, B.</creator><creator>Sawyer, W. Gregory</creator><general>Elsevier Ltd</general><general>SME</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>883</scope><scope>88I</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M0F</scope><scope>M2P</scope><scope>M7S</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>2004</creationdate><title>A Multiscale Fabrication Approach to Microfluidic System Development</title><author>Schmitz, T.L. ; Dagata, J.A. ; Dutterer, B. ; Sawyer, W. Gregory</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c197t-d4850f50ff99faa0fe63786e1cd4d9e5019792ea92c43160063112a63d1436593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Design</topic><topic>Flexure</topic><topic>High speed machining</topic><topic>Hot Embossing</topic><topic>Laboratories</topic><topic>Manufacturing</topic><topic>Operations research</topic><topic>Polymers</topic><topic>Silicon wafers</topic><topic>Studies</topic><topic>Systems development</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schmitz, T.L.</creatorcontrib><creatorcontrib>Dagata, J.A.</creatorcontrib><creatorcontrib>Dutterer, B.</creatorcontrib><creatorcontrib>Sawyer, W. Gregory</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>ABI/INFORM Trade & Industry (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>ABI/INFORM Trade & Industry</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of manufacturing processes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schmitz, T.L.</au><au>Dagata, J.A.</au><au>Dutterer, B.</au><au>Sawyer, W. Gregory</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Multiscale Fabrication Approach to Microfluidic System Development</atitle><jtitle>Journal of manufacturing processes</jtitle><date>2004</date><risdate>2004</risdate><volume>6</volume><issue>1</issue><spage>88</spage><epage>96</epage><pages>88-96</pages><issn>1526-6125</issn><eissn>2212-4616</eissn><abstract>Microfluidic systems for analytical, medical, and sensing applications integrate optical or electrical readouts in lowcost, low-volume consumption systems. Embedding chemically functionalized templates with nanoscale topography within these devices links the scale at which molecular recognition/ self-organization occurs and the macroscopic layout of fluid channels, mixing volumes, and detection regions. Although the design of a platform that would meet the needs of all microfluidic experiments is a difficult undertaking, this paper provides a description of a flexure-based platform that may address generic requirements such as low cost, ease of manufacture, and repeatable alignment/sealing performance. Experimental results are provided for master replication in plastics by hot embossing and a microfluidic platform that orients 125 micrometer channels embossed in a poly(vinyl chloride) gasket to an array of high-speed machined channels.</abstract><cop>Dearborn</cop><pub>Elsevier Ltd</pub><doi>10.1016/S1526-6125(04)70062-6</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1526-6125 |
ispartof | Journal of manufacturing processes, 2004, Vol.6 (1), p.88-96 |
issn | 1526-6125 2212-4616 |
language | eng |
recordid | cdi_proquest_journals_195250119 |
source | Access via ScienceDirect (Elsevier) |
subjects | Design Flexure High speed machining Hot Embossing Laboratories Manufacturing Operations research Polymers Silicon wafers Studies Systems development |
title | A Multiscale Fabrication Approach to Microfluidic System Development |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T19%3A44%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Multiscale%20Fabrication%20Approach%20to%20Microfluidic%20System%20Development&rft.jtitle=Journal%20of%20manufacturing%20processes&rft.au=Schmitz,%20T.L.&rft.date=2004&rft.volume=6&rft.issue=1&rft.spage=88&rft.epage=96&rft.pages=88-96&rft.issn=1526-6125&rft.eissn=2212-4616&rft_id=info:doi/10.1016/S1526-6125(04)70062-6&rft_dat=%3Cproquest_cross%3E810409881%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=195250119&rft_id=info:pmid/&rft_els_id=S1526612504700626&rfr_iscdi=true |