Two-Dimensional Finite Element Simulation of Material Flow in the Friction Stir Welding Process

Solid mechanics based finite element models and computational procedures have been developed by the authors to study and simulate the friction stir welding process. In this paper, two-dimensional simulation results of the material flow pattern and spatial velocity field around the rotating tool pin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of manufacturing processes 2004, Vol.6 (2), p.125-133
Hauptverfasser: Deng, Xiaomin, Xu, Shaowen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 133
container_issue 2
container_start_page 125
container_title Journal of manufacturing processes
container_volume 6
creator Deng, Xiaomin
Xu, Shaowen
description Solid mechanics based finite element models and computational procedures have been developed by the authors to study and simulate the friction stir welding process. In this paper, two-dimensional simulation results of the material flow pattern and spatial velocity field around the rotating tool pin during welding, and the positions of material particles around the pin after welding, are presented. Material flow pattern predictions are found to compare favorably with experimental observations. Simulation results suggest that material particles in front of the tool pin tend to pass and get behind the rotating pin from the retreating side of the pin. Similarities between predicted velocity fields based on two different tool-workpiece interface models are described in detail, and implications of these findings (e.g., to fluid dynamics based models) are discussed.
doi_str_mv 10.1016/S1526-6125(04)70066-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_195243611</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1526612504700663</els_id><sourcerecordid>732487521</sourcerecordid><originalsourceid>FETCH-LOGICAL-c279t-409007bc3e3bacc1efa7fb30c08adc8f0417912e9860899c724c60f54fa57023</originalsourceid><addsrcrecordid>eNqFkF1LMzEQhYMoWD9-ghAE4fVidSabzXavRNSqoCi04GVI04lGthtNUsV_77YV30uvBmaec4ZzGDtAOEFAdTrGSqhCoaj-gTyuAZQqyg02EAJFIRWqTTb4RbbZTkqvACgk4IDpyWcoLv2cuuRDZ1o-8p3PxK9a6neZj_180Zrc33hw_N5kin5JteGT-47nF-Kj6O0KGGcf-RO1M98988cYLKW0x7acaRPt_8xdNhldTS5uiruH69uL87vCirrJhYQGoJ7aksqpsRbJmdpNS7AwNDM7dCCxblBQM1QwbBpbC2kVuEo6U9Ugyl12uLZ9i-F9QSnr17CIfZ6ksamELBViD1VryMaQUiSn36Kfm_ilEfSySb1qUi9r0iD1qkld9rqjH3OTrGldNJ316b9YCSUFLrmzNUd90A9PUSfrqbM085Fs1rPg__j0DYiuhx4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195243611</pqid></control><display><type>article</type><title>Two-Dimensional Finite Element Simulation of Material Flow in the Friction Stir Welding Process</title><source>Elsevier ScienceDirect Journals</source><creator>Deng, Xiaomin ; Xu, Shaowen</creator><creatorcontrib>Deng, Xiaomin ; Xu, Shaowen</creatorcontrib><description>Solid mechanics based finite element models and computational procedures have been developed by the authors to study and simulate the friction stir welding process. In this paper, two-dimensional simulation results of the material flow pattern and spatial velocity field around the rotating tool pin during welding, and the positions of material particles around the pin after welding, are presented. Material flow pattern predictions are found to compare favorably with experimental observations. Simulation results suggest that material particles in front of the tool pin tend to pass and get behind the rotating pin from the retreating side of the pin. Similarities between predicted velocity fields based on two different tool-workpiece interface models are described in detail, and implications of these findings (e.g., to fluid dynamics based models) are discussed.</description><identifier>ISSN: 1526-6125</identifier><identifier>EISSN: 2212-4616</identifier><identifier>DOI: 10.1016/S1526-6125(04)70066-3</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Exact sciences and technology ; Finite element analysis ; Finite Element Simulation ; Fluid dynamics ; Friction Stir Welding ; Heat ; Joining, thermal cutting: metallurgical aspects ; Material Flow ; Mechanics ; Metals. Metallurgy ; Production methods ; Simulation ; Solid Mechanics Model ; Studies ; Velocity ; Welding</subject><ispartof>Journal of manufacturing processes, 2004, Vol.6 (2), p.125-133</ispartof><rights>2004 Society of Manufacturing Engineers</rights><rights>2005 INIST-CNRS</rights><rights>Copyright Society of Manufacturing Engineers 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c279t-409007bc3e3bacc1efa7fb30c08adc8f0417912e9860899c724c60f54fa57023</citedby><cites>FETCH-LOGICAL-c279t-409007bc3e3bacc1efa7fb30c08adc8f0417912e9860899c724c60f54fa57023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S1526-6125(04)70066-3$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,4010,27904,27905,27906,45976</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16264213$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Deng, Xiaomin</creatorcontrib><creatorcontrib>Xu, Shaowen</creatorcontrib><title>Two-Dimensional Finite Element Simulation of Material Flow in the Friction Stir Welding Process</title><title>Journal of manufacturing processes</title><description>Solid mechanics based finite element models and computational procedures have been developed by the authors to study and simulate the friction stir welding process. In this paper, two-dimensional simulation results of the material flow pattern and spatial velocity field around the rotating tool pin during welding, and the positions of material particles around the pin after welding, are presented. Material flow pattern predictions are found to compare favorably with experimental observations. Simulation results suggest that material particles in front of the tool pin tend to pass and get behind the rotating pin from the retreating side of the pin. Similarities between predicted velocity fields based on two different tool-workpiece interface models are described in detail, and implications of these findings (e.g., to fluid dynamics based models) are discussed.</description><subject>Applied sciences</subject><subject>Exact sciences and technology</subject><subject>Finite element analysis</subject><subject>Finite Element Simulation</subject><subject>Fluid dynamics</subject><subject>Friction Stir Welding</subject><subject>Heat</subject><subject>Joining, thermal cutting: metallurgical aspects</subject><subject>Material Flow</subject><subject>Mechanics</subject><subject>Metals. Metallurgy</subject><subject>Production methods</subject><subject>Simulation</subject><subject>Solid Mechanics Model</subject><subject>Studies</subject><subject>Velocity</subject><subject>Welding</subject><issn>1526-6125</issn><issn>2212-4616</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkF1LMzEQhYMoWD9-ghAE4fVidSabzXavRNSqoCi04GVI04lGthtNUsV_77YV30uvBmaec4ZzGDtAOEFAdTrGSqhCoaj-gTyuAZQqyg02EAJFIRWqTTb4RbbZTkqvACgk4IDpyWcoLv2cuuRDZ1o-8p3PxK9a6neZj_180Zrc33hw_N5kin5JteGT-47nF-Kj6O0KGGcf-RO1M98988cYLKW0x7acaRPt_8xdNhldTS5uiruH69uL87vCirrJhYQGoJ7aksqpsRbJmdpNS7AwNDM7dCCxblBQM1QwbBpbC2kVuEo6U9Ugyl12uLZ9i-F9QSnr17CIfZ6ksamELBViD1VryMaQUiSn36Kfm_ilEfSySb1qUi9r0iD1qkld9rqjH3OTrGldNJ316b9YCSUFLrmzNUd90A9PUSfrqbM085Fs1rPg__j0DYiuhx4</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Deng, Xiaomin</creator><creator>Xu, Shaowen</creator><general>Elsevier Ltd</general><general>Elsevier</general><general>Society of Mechanical Engineers</general><general>SME</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>883</scope><scope>88I</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M0F</scope><scope>M2P</scope><scope>M7S</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>2004</creationdate><title>Two-Dimensional Finite Element Simulation of Material Flow in the Friction Stir Welding Process</title><author>Deng, Xiaomin ; Xu, Shaowen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c279t-409007bc3e3bacc1efa7fb30c08adc8f0417912e9860899c724c60f54fa57023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Applied sciences</topic><topic>Exact sciences and technology</topic><topic>Finite element analysis</topic><topic>Finite Element Simulation</topic><topic>Fluid dynamics</topic><topic>Friction Stir Welding</topic><topic>Heat</topic><topic>Joining, thermal cutting: metallurgical aspects</topic><topic>Material Flow</topic><topic>Mechanics</topic><topic>Metals. Metallurgy</topic><topic>Production methods</topic><topic>Simulation</topic><topic>Solid Mechanics Model</topic><topic>Studies</topic><topic>Velocity</topic><topic>Welding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deng, Xiaomin</creatorcontrib><creatorcontrib>Xu, Shaowen</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>ABI/INFORM Trade &amp; Industry (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>ABI/INFORM Trade &amp; Industry</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of manufacturing processes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deng, Xiaomin</au><au>Xu, Shaowen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two-Dimensional Finite Element Simulation of Material Flow in the Friction Stir Welding Process</atitle><jtitle>Journal of manufacturing processes</jtitle><date>2004</date><risdate>2004</risdate><volume>6</volume><issue>2</issue><spage>125</spage><epage>133</epage><pages>125-133</pages><issn>1526-6125</issn><eissn>2212-4616</eissn><abstract>Solid mechanics based finite element models and computational procedures have been developed by the authors to study and simulate the friction stir welding process. In this paper, two-dimensional simulation results of the material flow pattern and spatial velocity field around the rotating tool pin during welding, and the positions of material particles around the pin after welding, are presented. Material flow pattern predictions are found to compare favorably with experimental observations. Simulation results suggest that material particles in front of the tool pin tend to pass and get behind the rotating pin from the retreating side of the pin. Similarities between predicted velocity fields based on two different tool-workpiece interface models are described in detail, and implications of these findings (e.g., to fluid dynamics based models) are discussed.</abstract><cop>Oxford</cop><cop>Dearborn, MI</cop><pub>Elsevier Ltd</pub><doi>10.1016/S1526-6125(04)70066-3</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1526-6125
ispartof Journal of manufacturing processes, 2004, Vol.6 (2), p.125-133
issn 1526-6125
2212-4616
language eng
recordid cdi_proquest_journals_195243611
source Elsevier ScienceDirect Journals
subjects Applied sciences
Exact sciences and technology
Finite element analysis
Finite Element Simulation
Fluid dynamics
Friction Stir Welding
Heat
Joining, thermal cutting: metallurgical aspects
Material Flow
Mechanics
Metals. Metallurgy
Production methods
Simulation
Solid Mechanics Model
Studies
Velocity
Welding
title Two-Dimensional Finite Element Simulation of Material Flow in the Friction Stir Welding Process
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T12%3A44%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two-Dimensional%20Finite%20Element%20Simulation%20of%20Material%20Flow%20in%20the%20Friction%20Stir%20Welding%20Process&rft.jtitle=Journal%20of%20manufacturing%20processes&rft.au=Deng,%20Xiaomin&rft.date=2004&rft.volume=6&rft.issue=2&rft.spage=125&rft.epage=133&rft.pages=125-133&rft.issn=1526-6125&rft.eissn=2212-4616&rft_id=info:doi/10.1016/S1526-6125(04)70066-3&rft_dat=%3Cproquest_cross%3E732487521%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=195243611&rft_id=info:pmid/&rft_els_id=S1526612504700663&rfr_iscdi=true