Exact mass measurements using a 7 tesla fourier transform ion cyclotron resonance mass spectrometer in a good laboratory practices-regulated environment
Fourier transform ion cyclotron resonance mass spectrometry has been found to produce reliable exact mass measurements using two different internal calibration methods. For these measurements, electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI) were utilized both in...
Gespeichert in:
Veröffentlicht in: | Journal of the American Society for Mass Spectrometry 1999-12, Vol.10 (12), p.1291-1297 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1297 |
---|---|
container_issue | 12 |
container_start_page | 1291 |
container_title | Journal of the American Society for Mass Spectrometry |
container_volume | 10 |
creator | Burton, Richard D. Matuszak, Kenneth P. Watson, Clifford H. Eyler, John R. |
description | Fourier transform ion cyclotron resonance mass spectrometry has been found to produce reliable exact mass measurements using two different internal calibration methods. For these measurements, electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI) were utilized both individually and in tandem. For internal calibration with a co-dissolved polyethylene glycol standard, measurements of 41 compounds resulted in an average absolute mass determination error of 0.7 ppm, with a standard deviation of 0.9 ppm. For comparison, internal calibration was effected through the simultaneous use of ESI and MALDI, with the former being used for the introduction of analyte ions and the latter for formation of polymethylmethacrylate calibrant ions. This technique led to mass measurements with an average absolute error of 0.8 ppm and a standard deviation of 1.0 ppm. In addition, exact mass measurements of tandem mass spectrometry fragment ions were made for 35 compounds using external calibration with a single internal mass standard. The observed average absolute error was 0.7 ppm with a standard deviation of 1.0 ppm. |
doi_str_mv | 10.1016/S1044-0305(99)00106-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1952433481</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1044030599001063</els_id><sourcerecordid>1952433481</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-b1194c1a689570565016285eb47e08ecc6a193a71f7e3545a26b23c66b7d02853</originalsourceid><addsrcrecordid>eNqFkc1u1TAQhSMEEqXwCEiWYAGLgB3_xSuEqkIrVWIBrC3HmVy5SuKLx6l634THZW5vEUtWHlnfOTNzpmleC_5BcGE-fhdcqZZLrt85955zwU0rnzRnoreuFaKTT6n-izxvXiDeEmS5s2fN78v7ECtbAiJbIOBWYIG1ItswrTsWmGUVcA5syltJUFgtYcUpl4WlvLJ4iHOuhaoCmNewRjh54R4i_S9QSZNWMtrlPLI5DLmEmsuB7Qs1ThGwLbDb5lBhZLDeJTI7TvCyeTaFGeHV43ve_Pxy-ePiqr359vX64vNNG6VRtR2EcCqKYHqnLddGUyBdr2FQFngPMZognAxWTBakVjp0ZuhkNGawIydQnjdvTr77kn9tgNXf0qYrtfTC6U5JqXpBlD5RsWTEApPfl7SEcvCC--MR_MMR_DFh75x_OIKXpHv76B4whnmi8GLCf-JOuM4owj6dMKBN7yhmjzEBhTmmQjn6Maf_NPoDJ_2dtA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1952433481</pqid></control><display><type>article</type><title>Exact mass measurements using a 7 tesla fourier transform ion cyclotron resonance mass spectrometer in a good laboratory practices-regulated environment</title><source>SpringerNature Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Burton, Richard D. ; Matuszak, Kenneth P. ; Watson, Clifford H. ; Eyler, John R.</creator><creatorcontrib>Burton, Richard D. ; Matuszak, Kenneth P. ; Watson, Clifford H. ; Eyler, John R.</creatorcontrib><description>Fourier transform ion cyclotron resonance mass spectrometry has been found to produce reliable exact mass measurements using two different internal calibration methods. For these measurements, electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI) were utilized both individually and in tandem. For internal calibration with a co-dissolved polyethylene glycol standard, measurements of 41 compounds resulted in an average absolute mass determination error of 0.7 ppm, with a standard deviation of 0.9 ppm. For comparison, internal calibration was effected through the simultaneous use of ESI and MALDI, with the former being used for the introduction of analyte ions and the latter for formation of polymethylmethacrylate calibrant ions. This technique led to mass measurements with an average absolute error of 0.8 ppm and a standard deviation of 1.0 ppm. In addition, exact mass measurements of tandem mass spectrometry fragment ions were made for 35 compounds using external calibration with a single internal mass standard. The observed average absolute error was 0.7 ppm with a standard deviation of 1.0 ppm.</description><identifier>ISSN: 1044-0305</identifier><identifier>EISSN: 1879-1123</identifier><identifier>DOI: 10.1016/S1044-0305(99)00106-3</identifier><language>eng</language><publisher>New York, NY: Elsevier Inc</publisher><subject>Analytical chemistry ; Calibration ; Chemistry ; Cyclotron resonance ; Desorption ; Error analysis ; Errors ; Exact sciences and technology ; Fourier transforms ; Ionization ; Ions ; Lasers ; Mass spectrometry ; Measurement methods ; Polyethylene glycol ; Polyethylenes ; Scientific imaging ; Spectrometric and optical methods ; Spectroscopy ; Standard deviation</subject><ispartof>Journal of the American Society for Mass Spectrometry, 1999-12, Vol.10 (12), p.1291-1297</ispartof><rights>1999 American Society for Mass Spectrometry</rights><rights>2000 INIST-CNRS</rights><rights>American Society for Mass Spectrometry 1999</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-b1194c1a689570565016285eb47e08ecc6a193a71f7e3545a26b23c66b7d02853</citedby><cites>FETCH-LOGICAL-c364t-b1194c1a689570565016285eb47e08ecc6a193a71f7e3545a26b23c66b7d02853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1219264$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Burton, Richard D.</creatorcontrib><creatorcontrib>Matuszak, Kenneth P.</creatorcontrib><creatorcontrib>Watson, Clifford H.</creatorcontrib><creatorcontrib>Eyler, John R.</creatorcontrib><title>Exact mass measurements using a 7 tesla fourier transform ion cyclotron resonance mass spectrometer in a good laboratory practices-regulated environment</title><title>Journal of the American Society for Mass Spectrometry</title><description>Fourier transform ion cyclotron resonance mass spectrometry has been found to produce reliable exact mass measurements using two different internal calibration methods. For these measurements, electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI) were utilized both individually and in tandem. For internal calibration with a co-dissolved polyethylene glycol standard, measurements of 41 compounds resulted in an average absolute mass determination error of 0.7 ppm, with a standard deviation of 0.9 ppm. For comparison, internal calibration was effected through the simultaneous use of ESI and MALDI, with the former being used for the introduction of analyte ions and the latter for formation of polymethylmethacrylate calibrant ions. This technique led to mass measurements with an average absolute error of 0.8 ppm and a standard deviation of 1.0 ppm. In addition, exact mass measurements of tandem mass spectrometry fragment ions were made for 35 compounds using external calibration with a single internal mass standard. The observed average absolute error was 0.7 ppm with a standard deviation of 1.0 ppm.</description><subject>Analytical chemistry</subject><subject>Calibration</subject><subject>Chemistry</subject><subject>Cyclotron resonance</subject><subject>Desorption</subject><subject>Error analysis</subject><subject>Errors</subject><subject>Exact sciences and technology</subject><subject>Fourier transforms</subject><subject>Ionization</subject><subject>Ions</subject><subject>Lasers</subject><subject>Mass spectrometry</subject><subject>Measurement methods</subject><subject>Polyethylene glycol</subject><subject>Polyethylenes</subject><subject>Scientific imaging</subject><subject>Spectrometric and optical methods</subject><subject>Spectroscopy</subject><subject>Standard deviation</subject><issn>1044-0305</issn><issn>1879-1123</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkc1u1TAQhSMEEqXwCEiWYAGLgB3_xSuEqkIrVWIBrC3HmVy5SuKLx6l634THZW5vEUtWHlnfOTNzpmleC_5BcGE-fhdcqZZLrt85955zwU0rnzRnoreuFaKTT6n-izxvXiDeEmS5s2fN78v7ECtbAiJbIOBWYIG1ItswrTsWmGUVcA5syltJUFgtYcUpl4WlvLJ4iHOuhaoCmNewRjh54R4i_S9QSZNWMtrlPLI5DLmEmsuB7Qs1ThGwLbDb5lBhZLDeJTI7TvCyeTaFGeHV43ve_Pxy-ePiqr359vX64vNNG6VRtR2EcCqKYHqnLddGUyBdr2FQFngPMZognAxWTBakVjp0ZuhkNGawIydQnjdvTr77kn9tgNXf0qYrtfTC6U5JqXpBlD5RsWTEApPfl7SEcvCC--MR_MMR_DFh75x_OIKXpHv76B4whnmi8GLCf-JOuM4owj6dMKBN7yhmjzEBhTmmQjn6Maf_NPoDJ_2dtA</recordid><startdate>19991201</startdate><enddate>19991201</enddate><creator>Burton, Richard D.</creator><creator>Matuszak, Kenneth P.</creator><creator>Watson, Clifford H.</creator><creator>Eyler, John R.</creator><general>Elsevier Inc</general><general>Elsevier Science</general><general>Springer Nature B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>19991201</creationdate><title>Exact mass measurements using a 7 tesla fourier transform ion cyclotron resonance mass spectrometer in a good laboratory practices-regulated environment</title><author>Burton, Richard D. ; Matuszak, Kenneth P. ; Watson, Clifford H. ; Eyler, John R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-b1194c1a689570565016285eb47e08ecc6a193a71f7e3545a26b23c66b7d02853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Analytical chemistry</topic><topic>Calibration</topic><topic>Chemistry</topic><topic>Cyclotron resonance</topic><topic>Desorption</topic><topic>Error analysis</topic><topic>Errors</topic><topic>Exact sciences and technology</topic><topic>Fourier transforms</topic><topic>Ionization</topic><topic>Ions</topic><topic>Lasers</topic><topic>Mass spectrometry</topic><topic>Measurement methods</topic><topic>Polyethylene glycol</topic><topic>Polyethylenes</topic><topic>Scientific imaging</topic><topic>Spectrometric and optical methods</topic><topic>Spectroscopy</topic><topic>Standard deviation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Burton, Richard D.</creatorcontrib><creatorcontrib>Matuszak, Kenneth P.</creatorcontrib><creatorcontrib>Watson, Clifford H.</creatorcontrib><creatorcontrib>Eyler, John R.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of the American Society for Mass Spectrometry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Burton, Richard D.</au><au>Matuszak, Kenneth P.</au><au>Watson, Clifford H.</au><au>Eyler, John R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exact mass measurements using a 7 tesla fourier transform ion cyclotron resonance mass spectrometer in a good laboratory practices-regulated environment</atitle><jtitle>Journal of the American Society for Mass Spectrometry</jtitle><date>1999-12-01</date><risdate>1999</risdate><volume>10</volume><issue>12</issue><spage>1291</spage><epage>1297</epage><pages>1291-1297</pages><issn>1044-0305</issn><eissn>1879-1123</eissn><abstract>Fourier transform ion cyclotron resonance mass spectrometry has been found to produce reliable exact mass measurements using two different internal calibration methods. For these measurements, electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI) were utilized both individually and in tandem. For internal calibration with a co-dissolved polyethylene glycol standard, measurements of 41 compounds resulted in an average absolute mass determination error of 0.7 ppm, with a standard deviation of 0.9 ppm. For comparison, internal calibration was effected through the simultaneous use of ESI and MALDI, with the former being used for the introduction of analyte ions and the latter for formation of polymethylmethacrylate calibrant ions. This technique led to mass measurements with an average absolute error of 0.8 ppm and a standard deviation of 1.0 ppm. In addition, exact mass measurements of tandem mass spectrometry fragment ions were made for 35 compounds using external calibration with a single internal mass standard. The observed average absolute error was 0.7 ppm with a standard deviation of 1.0 ppm.</abstract><cop>New York, NY</cop><pub>Elsevier Inc</pub><doi>10.1016/S1044-0305(99)00106-3</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1044-0305 |
ispartof | Journal of the American Society for Mass Spectrometry, 1999-12, Vol.10 (12), p.1291-1297 |
issn | 1044-0305 1879-1123 |
language | eng |
recordid | cdi_proquest_journals_1952433481 |
source | SpringerNature Journals; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Analytical chemistry Calibration Chemistry Cyclotron resonance Desorption Error analysis Errors Exact sciences and technology Fourier transforms Ionization Ions Lasers Mass spectrometry Measurement methods Polyethylene glycol Polyethylenes Scientific imaging Spectrometric and optical methods Spectroscopy Standard deviation |
title | Exact mass measurements using a 7 tesla fourier transform ion cyclotron resonance mass spectrometer in a good laboratory practices-regulated environment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T22%3A51%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exact%20mass%20measurements%20using%20a%207%20tesla%20fourier%20transform%20ion%20cyclotron%20resonance%20mass%20spectrometer%20in%20a%20good%20laboratory%20practices-regulated%20environment&rft.jtitle=Journal%20of%20the%20American%20Society%20for%20Mass%20Spectrometry&rft.au=Burton,%20Richard%20D.&rft.date=1999-12-01&rft.volume=10&rft.issue=12&rft.spage=1291&rft.epage=1297&rft.pages=1291-1297&rft.issn=1044-0305&rft.eissn=1879-1123&rft_id=info:doi/10.1016/S1044-0305(99)00106-3&rft_dat=%3Cproquest_cross%3E1952433481%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1952433481&rft_id=info:pmid/&rft_els_id=S1044030599001063&rfr_iscdi=true |