Using high‐resolution isotope data and alternative calibration strategies for a tracer‐aided runoff model in a nested catchment

Testing hydrological models over different spatio‐temporal scales is important for both evaluating diagnostics and aiding process understanding. High‐frequency (6‐hr) stable isotope sampling of rainfall and runoff was undertaken during 3‐week periods in summer and winter within 12 months of daily sa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Hydrological processes 2017-10, Vol.31 (22), p.3962-3978
Hauptverfasser: Tunaley, Claire, Tetzlaff, Doerthe, Birkel, Christian, Soulsby, Chris
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3978
container_issue 22
container_start_page 3962
container_title Hydrological processes
container_volume 31
creator Tunaley, Claire
Tetzlaff, Doerthe
Birkel, Christian
Soulsby, Chris
description Testing hydrological models over different spatio‐temporal scales is important for both evaluating diagnostics and aiding process understanding. High‐frequency (6‐hr) stable isotope sampling of rainfall and runoff was undertaken during 3‐week periods in summer and winter within 12 months of daily sampling in a 3.2‐km2 catchment in the Scottish Highlands. This was used to calibrate and test a tracer‐aided model to assess the (a) information content of high‐resolution data, (b) effect of different calibration strategies on simulations and inferred processes, and (c) model transferability to
doi_str_mv 10.1002/hyp.11313
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1952328105</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1952328105</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3323-5cfa878e14485c5e72b3d82f8e56f2722617357c59b86de3abad3a9b6631f4823</originalsourceid><addsrcrecordid>eNp1kL9OwzAQxi0EEqUw8AaWmBjS-k-dOCOqgCJVgoEOTJHjnFtXaVxsF9QNiRfgGXkSTMPKdHe633367kPokpIRJYSNV_vtiFJO-REaUFKWGSVSHKMBkVJkOZHFKToLYU0ImRBJBuhzEWy3xCu7XH1_fHkIrt1F6zpsg4tuC7hRUWHVNVi1EXynon0DrFVra68OYIipgaWFgI3zWOE0a_BJTdkGGux3nTMGb1wDLbZdAjoIMS20inq1gS6eoxOj2gAXf3WIFne3z9NZNn-8f5jezDPNOeOZ0EbJQgKdTKTQAgpW80YyI0HkhhWM5bTgotCirGXeAFe1argq6zzn1Ewk40N01etuvXvdJRPV2u3SS22oaCkYZ5ISkajrntLeheDBVFtvN8rvK0qq34yrlHF1yDix4559ty3s_wer2ctTf_ED6yGBnA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1952328105</pqid></control><display><type>article</type><title>Using high‐resolution isotope data and alternative calibration strategies for a tracer‐aided runoff model in a nested catchment</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Tunaley, Claire ; Tetzlaff, Doerthe ; Birkel, Christian ; Soulsby, Chris</creator><creatorcontrib>Tunaley, Claire ; Tetzlaff, Doerthe ; Birkel, Christian ; Soulsby, Chris</creatorcontrib><description>Testing hydrological models over different spatio‐temporal scales is important for both evaluating diagnostics and aiding process understanding. High‐frequency (6‐hr) stable isotope sampling of rainfall and runoff was undertaken during 3‐week periods in summer and winter within 12 months of daily sampling in a 3.2‐km2 catchment in the Scottish Highlands. This was used to calibrate and test a tracer‐aided model to assess the (a) information content of high‐resolution data, (b) effect of different calibration strategies on simulations and inferred processes, and (c) model transferability to &lt;1‐km2 subcatchment. The 6‐hourly data were successfully incorporated without loss of model performance, improving the temporal resolution of the modelling, and making it more relevant to the time dynamics of the isotope and hydrometric response. However, this added little new information due to old‐water dominance and riparian mixing in this peatland catchment. Time variant results, from differential split sample testing, highlighted the importance of calibrating to a wide range of hydrological conditions. This also provided insights into the nonstationarity of catchment mixing processes, in relation to storage and water ages, which varied markedly depending on the calibration period. Application to the nested subcatchment produced equivalent parameterization and performance, highlighting similarity in dominant processes. The study highlighted the utility of high‐resolution data in combination with tracer‐aided models, applied at multiple spatial scales, as learning tools to enhance process understanding and evaluation of model behaviour across nonstationary conditions. This helps reveal more fully the catchment response in terms of the different mechanistic controls on both wave celerites and particle velocities.</description><identifier>ISSN: 0885-6087</identifier><identifier>EISSN: 1099-1085</identifier><identifier>DOI: 10.1002/hyp.11313</identifier><language>eng</language><publisher>Chichester: Wiley Subscription Services, Inc</publisher><subject>Age ; Calibration ; Catchment area ; Catchment areas ; catchment storage ; Catchments ; Computer simulation ; Data ; Data processing ; Dynamics ; Evaluation ; High resolution ; Highlands ; high‐resolution isotopes ; Hydrologic models ; Hydrology ; Isotopes ; Learning behaviour ; Mixing ; Mixing processes ; Modelling ; parameter transferability ; Parameterization ; Rain ; Rainfall ; Resolution ; Riparian environments ; Runoff ; runoff processes ; Sampling ; Spatial discrimination learning ; Stable isotopes ; Storage ; Temporal resolution ; Testing ; Tracers ; tracer‐aided modelling ; water age</subject><ispartof>Hydrological processes, 2017-10, Vol.31 (22), p.3962-3978</ispartof><rights>Copyright © 2017 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3323-5cfa878e14485c5e72b3d82f8e56f2722617357c59b86de3abad3a9b6631f4823</citedby><cites>FETCH-LOGICAL-c3323-5cfa878e14485c5e72b3d82f8e56f2722617357c59b86de3abad3a9b6631f4823</cites><orcidid>0000-0002-2958-0366 ; 0000-0002-7183-8674 ; 0000-0001-6910-2118</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fhyp.11313$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fhyp.11313$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Tunaley, Claire</creatorcontrib><creatorcontrib>Tetzlaff, Doerthe</creatorcontrib><creatorcontrib>Birkel, Christian</creatorcontrib><creatorcontrib>Soulsby, Chris</creatorcontrib><title>Using high‐resolution isotope data and alternative calibration strategies for a tracer‐aided runoff model in a nested catchment</title><title>Hydrological processes</title><description>Testing hydrological models over different spatio‐temporal scales is important for both evaluating diagnostics and aiding process understanding. High‐frequency (6‐hr) stable isotope sampling of rainfall and runoff was undertaken during 3‐week periods in summer and winter within 12 months of daily sampling in a 3.2‐km2 catchment in the Scottish Highlands. This was used to calibrate and test a tracer‐aided model to assess the (a) information content of high‐resolution data, (b) effect of different calibration strategies on simulations and inferred processes, and (c) model transferability to &lt;1‐km2 subcatchment. The 6‐hourly data were successfully incorporated without loss of model performance, improving the temporal resolution of the modelling, and making it more relevant to the time dynamics of the isotope and hydrometric response. However, this added little new information due to old‐water dominance and riparian mixing in this peatland catchment. Time variant results, from differential split sample testing, highlighted the importance of calibrating to a wide range of hydrological conditions. This also provided insights into the nonstationarity of catchment mixing processes, in relation to storage and water ages, which varied markedly depending on the calibration period. Application to the nested subcatchment produced equivalent parameterization and performance, highlighting similarity in dominant processes. The study highlighted the utility of high‐resolution data in combination with tracer‐aided models, applied at multiple spatial scales, as learning tools to enhance process understanding and evaluation of model behaviour across nonstationary conditions. This helps reveal more fully the catchment response in terms of the different mechanistic controls on both wave celerites and particle velocities.</description><subject>Age</subject><subject>Calibration</subject><subject>Catchment area</subject><subject>Catchment areas</subject><subject>catchment storage</subject><subject>Catchments</subject><subject>Computer simulation</subject><subject>Data</subject><subject>Data processing</subject><subject>Dynamics</subject><subject>Evaluation</subject><subject>High resolution</subject><subject>Highlands</subject><subject>high‐resolution isotopes</subject><subject>Hydrologic models</subject><subject>Hydrology</subject><subject>Isotopes</subject><subject>Learning behaviour</subject><subject>Mixing</subject><subject>Mixing processes</subject><subject>Modelling</subject><subject>parameter transferability</subject><subject>Parameterization</subject><subject>Rain</subject><subject>Rainfall</subject><subject>Resolution</subject><subject>Riparian environments</subject><subject>Runoff</subject><subject>runoff processes</subject><subject>Sampling</subject><subject>Spatial discrimination learning</subject><subject>Stable isotopes</subject><subject>Storage</subject><subject>Temporal resolution</subject><subject>Testing</subject><subject>Tracers</subject><subject>tracer‐aided modelling</subject><subject>water age</subject><issn>0885-6087</issn><issn>1099-1085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kL9OwzAQxi0EEqUw8AaWmBjS-k-dOCOqgCJVgoEOTJHjnFtXaVxsF9QNiRfgGXkSTMPKdHe633367kPokpIRJYSNV_vtiFJO-REaUFKWGSVSHKMBkVJkOZHFKToLYU0ImRBJBuhzEWy3xCu7XH1_fHkIrt1F6zpsg4tuC7hRUWHVNVi1EXynon0DrFVra68OYIipgaWFgI3zWOE0a_BJTdkGGux3nTMGb1wDLbZdAjoIMS20inq1gS6eoxOj2gAXf3WIFne3z9NZNn-8f5jezDPNOeOZ0EbJQgKdTKTQAgpW80YyI0HkhhWM5bTgotCirGXeAFe1argq6zzn1Ewk40N01etuvXvdJRPV2u3SS22oaCkYZ5ISkajrntLeheDBVFtvN8rvK0qq34yrlHF1yDix4559ty3s_wer2ctTf_ED6yGBnA</recordid><startdate>20171030</startdate><enddate>20171030</enddate><creator>Tunaley, Claire</creator><creator>Tetzlaff, Doerthe</creator><creator>Birkel, Christian</creator><creator>Soulsby, Chris</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7ST</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-2958-0366</orcidid><orcidid>https://orcid.org/0000-0002-7183-8674</orcidid><orcidid>https://orcid.org/0000-0001-6910-2118</orcidid></search><sort><creationdate>20171030</creationdate><title>Using high‐resolution isotope data and alternative calibration strategies for a tracer‐aided runoff model in a nested catchment</title><author>Tunaley, Claire ; Tetzlaff, Doerthe ; Birkel, Christian ; Soulsby, Chris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3323-5cfa878e14485c5e72b3d82f8e56f2722617357c59b86de3abad3a9b6631f4823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Age</topic><topic>Calibration</topic><topic>Catchment area</topic><topic>Catchment areas</topic><topic>catchment storage</topic><topic>Catchments</topic><topic>Computer simulation</topic><topic>Data</topic><topic>Data processing</topic><topic>Dynamics</topic><topic>Evaluation</topic><topic>High resolution</topic><topic>Highlands</topic><topic>high‐resolution isotopes</topic><topic>Hydrologic models</topic><topic>Hydrology</topic><topic>Isotopes</topic><topic>Learning behaviour</topic><topic>Mixing</topic><topic>Mixing processes</topic><topic>Modelling</topic><topic>parameter transferability</topic><topic>Parameterization</topic><topic>Rain</topic><topic>Rainfall</topic><topic>Resolution</topic><topic>Riparian environments</topic><topic>Runoff</topic><topic>runoff processes</topic><topic>Sampling</topic><topic>Spatial discrimination learning</topic><topic>Stable isotopes</topic><topic>Storage</topic><topic>Temporal resolution</topic><topic>Testing</topic><topic>Tracers</topic><topic>tracer‐aided modelling</topic><topic>water age</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tunaley, Claire</creatorcontrib><creatorcontrib>Tetzlaff, Doerthe</creatorcontrib><creatorcontrib>Birkel, Christian</creatorcontrib><creatorcontrib>Soulsby, Chris</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><jtitle>Hydrological processes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tunaley, Claire</au><au>Tetzlaff, Doerthe</au><au>Birkel, Christian</au><au>Soulsby, Chris</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using high‐resolution isotope data and alternative calibration strategies for a tracer‐aided runoff model in a nested catchment</atitle><jtitle>Hydrological processes</jtitle><date>2017-10-30</date><risdate>2017</risdate><volume>31</volume><issue>22</issue><spage>3962</spage><epage>3978</epage><pages>3962-3978</pages><issn>0885-6087</issn><eissn>1099-1085</eissn><abstract>Testing hydrological models over different spatio‐temporal scales is important for both evaluating diagnostics and aiding process understanding. High‐frequency (6‐hr) stable isotope sampling of rainfall and runoff was undertaken during 3‐week periods in summer and winter within 12 months of daily sampling in a 3.2‐km2 catchment in the Scottish Highlands. This was used to calibrate and test a tracer‐aided model to assess the (a) information content of high‐resolution data, (b) effect of different calibration strategies on simulations and inferred processes, and (c) model transferability to &lt;1‐km2 subcatchment. The 6‐hourly data were successfully incorporated without loss of model performance, improving the temporal resolution of the modelling, and making it more relevant to the time dynamics of the isotope and hydrometric response. However, this added little new information due to old‐water dominance and riparian mixing in this peatland catchment. Time variant results, from differential split sample testing, highlighted the importance of calibrating to a wide range of hydrological conditions. This also provided insights into the nonstationarity of catchment mixing processes, in relation to storage and water ages, which varied markedly depending on the calibration period. Application to the nested subcatchment produced equivalent parameterization and performance, highlighting similarity in dominant processes. The study highlighted the utility of high‐resolution data in combination with tracer‐aided models, applied at multiple spatial scales, as learning tools to enhance process understanding and evaluation of model behaviour across nonstationary conditions. This helps reveal more fully the catchment response in terms of the different mechanistic controls on both wave celerites and particle velocities.</abstract><cop>Chichester</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/hyp.11313</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-2958-0366</orcidid><orcidid>https://orcid.org/0000-0002-7183-8674</orcidid><orcidid>https://orcid.org/0000-0001-6910-2118</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0885-6087
ispartof Hydrological processes, 2017-10, Vol.31 (22), p.3962-3978
issn 0885-6087
1099-1085
language eng
recordid cdi_proquest_journals_1952328105
source Wiley Online Library Journals Frontfile Complete
subjects Age
Calibration
Catchment area
Catchment areas
catchment storage
Catchments
Computer simulation
Data
Data processing
Dynamics
Evaluation
High resolution
Highlands
high‐resolution isotopes
Hydrologic models
Hydrology
Isotopes
Learning behaviour
Mixing
Mixing processes
Modelling
parameter transferability
Parameterization
Rain
Rainfall
Resolution
Riparian environments
Runoff
runoff processes
Sampling
Spatial discrimination learning
Stable isotopes
Storage
Temporal resolution
Testing
Tracers
tracer‐aided modelling
water age
title Using high‐resolution isotope data and alternative calibration strategies for a tracer‐aided runoff model in a nested catchment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T15%3A55%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20high%E2%80%90resolution%20isotope%20data%20and%20alternative%20calibration%20strategies%20for%20a%20tracer%E2%80%90aided%20runoff%20model%20in%20a%20nested%20catchment&rft.jtitle=Hydrological%20processes&rft.au=Tunaley,%20Claire&rft.date=2017-10-30&rft.volume=31&rft.issue=22&rft.spage=3962&rft.epage=3978&rft.pages=3962-3978&rft.issn=0885-6087&rft.eissn=1099-1085&rft_id=info:doi/10.1002/hyp.11313&rft_dat=%3Cproquest_cross%3E1952328105%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1952328105&rft_id=info:pmid/&rfr_iscdi=true