The number of spanning trees of a family of 2-separable weighted graphs

Based on electrically equivalent transformations on weighted graphs, in this paper, we present a formula for computing the number of spanning trees of a family of 2-separable graphs formed from two base graphs by 2-sum operations. As applications, we compute the number of spanning trees of some spec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete Applied Mathematics 2017-10, Vol.229, p.154-160
Hauptverfasser: Gong, Helin, Li, Shuli
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 160
container_issue
container_start_page 154
container_title Discrete Applied Mathematics
container_volume 229
creator Gong, Helin
Li, Shuli
description Based on electrically equivalent transformations on weighted graphs, in this paper, we present a formula for computing the number of spanning trees of a family of 2-separable graphs formed from two base graphs by 2-sum operations. As applications, we compute the number of spanning trees of some special 2-separable graphs. Then comparisons are made between the number of spanning trees and the number of acyclic orientations for this family of 2-separable graphs under certain constraints. We also show that a factorization formula exists for the sum of weights of spanning trees of a special splitting graph.
doi_str_mv 10.1016/j.dam.2017.05.003
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1952146403</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0166218X17302408</els_id><sourcerecordid>1952146403</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-6b5afea133c4805baa38bb9130e62eabcf17a36d8bec0b66d6d95025381b9c1d3</originalsourceid><addsrcrecordid>eNp9kEtLw0AUhQdRsFZ_gLuA68R7M80kwZUUrULBTQV3wzxu2gnNw5lU6b83sa5d3Qfnu-dyGLtFSBBQ3NeJVU2SAuYJZAkAP2MzLPI0FnmO52w2akScYvFxya5CqAEAx2nGVpsdRe2h0eSjropCr9rWtdto8ERh2qioUo3bH6c-jQP1yiu9p-ib3HY3kI22XvW7cM0uKrUPdPNX5-z9-WmzfInXb6vX5eM6NlwUQyx0pipSyLlZFJBppXihdYkcSKSktKkwV1zYQpMBLYQVtswgzXiBujRo-Zzdne72vvs8UBhk3R18O1pKLLMUF2IBfFThSWV8F4KnSvbeNcofJYKc8pK1HPOSU14SMgm_zMOJofH9L0deBuOoNWSdJzNI27l_6B_y8nJB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1952146403</pqid></control><display><type>article</type><title>The number of spanning trees of a family of 2-separable weighted graphs</title><source>Elsevier ScienceDirect Journals Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Gong, Helin ; Li, Shuli</creator><creatorcontrib>Gong, Helin ; Li, Shuli</creatorcontrib><description>Based on electrically equivalent transformations on weighted graphs, in this paper, we present a formula for computing the number of spanning trees of a family of 2-separable graphs formed from two base graphs by 2-sum operations. As applications, we compute the number of spanning trees of some special 2-separable graphs. Then comparisons are made between the number of spanning trees and the number of acyclic orientations for this family of 2-separable graphs under certain constraints. We also show that a factorization formula exists for the sum of weights of spanning trees of a special splitting graph.</description><identifier>ISSN: 0166-218X</identifier><identifier>EISSN: 1872-6771</identifier><identifier>DOI: 10.1016/j.dam.2017.05.003</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>2-separable ; Electrically equivalent ; Graph theory ; Graphs ; Spanning tree ; Studies ; Trees ; Weighted graph</subject><ispartof>Discrete Applied Mathematics, 2017-10, Vol.229, p.154-160</ispartof><rights>2017 Elsevier B.V.</rights><rights>Copyright Elsevier BV Oct 1, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-6b5afea133c4805baa38bb9130e62eabcf17a36d8bec0b66d6d95025381b9c1d3</citedby><cites>FETCH-LOGICAL-c368t-6b5afea133c4805baa38bb9130e62eabcf17a36d8bec0b66d6d95025381b9c1d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.dam.2017.05.003$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Gong, Helin</creatorcontrib><creatorcontrib>Li, Shuli</creatorcontrib><title>The number of spanning trees of a family of 2-separable weighted graphs</title><title>Discrete Applied Mathematics</title><description>Based on electrically equivalent transformations on weighted graphs, in this paper, we present a formula for computing the number of spanning trees of a family of 2-separable graphs formed from two base graphs by 2-sum operations. As applications, we compute the number of spanning trees of some special 2-separable graphs. Then comparisons are made between the number of spanning trees and the number of acyclic orientations for this family of 2-separable graphs under certain constraints. We also show that a factorization formula exists for the sum of weights of spanning trees of a special splitting graph.</description><subject>2-separable</subject><subject>Electrically equivalent</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Spanning tree</subject><subject>Studies</subject><subject>Trees</subject><subject>Weighted graph</subject><issn>0166-218X</issn><issn>1872-6771</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLw0AUhQdRsFZ_gLuA68R7M80kwZUUrULBTQV3wzxu2gnNw5lU6b83sa5d3Qfnu-dyGLtFSBBQ3NeJVU2SAuYJZAkAP2MzLPI0FnmO52w2akScYvFxya5CqAEAx2nGVpsdRe2h0eSjropCr9rWtdto8ERh2qioUo3bH6c-jQP1yiu9p-ib3HY3kI22XvW7cM0uKrUPdPNX5-z9-WmzfInXb6vX5eM6NlwUQyx0pipSyLlZFJBppXihdYkcSKSktKkwV1zYQpMBLYQVtswgzXiBujRo-Zzdne72vvs8UBhk3R18O1pKLLMUF2IBfFThSWV8F4KnSvbeNcofJYKc8pK1HPOSU14SMgm_zMOJofH9L0deBuOoNWSdJzNI27l_6B_y8nJB</recordid><startdate>20171001</startdate><enddate>20171001</enddate><creator>Gong, Helin</creator><creator>Li, Shuli</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20171001</creationdate><title>The number of spanning trees of a family of 2-separable weighted graphs</title><author>Gong, Helin ; Li, Shuli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-6b5afea133c4805baa38bb9130e62eabcf17a36d8bec0b66d6d95025381b9c1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>2-separable</topic><topic>Electrically equivalent</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Spanning tree</topic><topic>Studies</topic><topic>Trees</topic><topic>Weighted graph</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gong, Helin</creatorcontrib><creatorcontrib>Li, Shuli</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Discrete Applied Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gong, Helin</au><au>Li, Shuli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The number of spanning trees of a family of 2-separable weighted graphs</atitle><jtitle>Discrete Applied Mathematics</jtitle><date>2017-10-01</date><risdate>2017</risdate><volume>229</volume><spage>154</spage><epage>160</epage><pages>154-160</pages><issn>0166-218X</issn><eissn>1872-6771</eissn><abstract>Based on electrically equivalent transformations on weighted graphs, in this paper, we present a formula for computing the number of spanning trees of a family of 2-separable graphs formed from two base graphs by 2-sum operations. As applications, we compute the number of spanning trees of some special 2-separable graphs. Then comparisons are made between the number of spanning trees and the number of acyclic orientations for this family of 2-separable graphs under certain constraints. We also show that a factorization formula exists for the sum of weights of spanning trees of a special splitting graph.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.dam.2017.05.003</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0166-218X
ispartof Discrete Applied Mathematics, 2017-10, Vol.229, p.154-160
issn 0166-218X
1872-6771
language eng
recordid cdi_proquest_journals_1952146403
source Elsevier ScienceDirect Journals Complete; EZB-FREE-00999 freely available EZB journals
subjects 2-separable
Electrically equivalent
Graph theory
Graphs
Spanning tree
Studies
Trees
Weighted graph
title The number of spanning trees of a family of 2-separable weighted graphs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T05%3A47%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20number%20of%20spanning%20trees%20of%20a%20family%20of%202-separable%20weighted%20graphs&rft.jtitle=Discrete%20Applied%20Mathematics&rft.au=Gong,%20Helin&rft.date=2017-10-01&rft.volume=229&rft.spage=154&rft.epage=160&rft.pages=154-160&rft.issn=0166-218X&rft.eissn=1872-6771&rft_id=info:doi/10.1016/j.dam.2017.05.003&rft_dat=%3Cproquest_cross%3E1952146403%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1952146403&rft_id=info:pmid/&rft_els_id=S0166218X17302408&rfr_iscdi=true