CFD simulation methodology for gas-solid flow in bypass pneumatic conveying – A review

•Different numerical model are described and compared for pneumatic conveying.•Fluidisation charts of different materials with flow modes boundaries are showed.•Guidance on what frictional approach to use for CFD analysis is provided.•A flow chart for the CFD methodology of bypass pneumatic conveyin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied thermal engineering 2017-10, Vol.125, p.185-208
Hauptverfasser: Wang, Ying, Williams, Kenneth, Jones, Mark, Chen, Bin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 208
container_issue
container_start_page 185
container_title Applied thermal engineering
container_volume 125
creator Wang, Ying
Williams, Kenneth
Jones, Mark
Chen, Bin
description •Different numerical model are described and compared for pneumatic conveying.•Fluidisation charts of different materials with flow modes boundaries are showed.•Guidance on what frictional approach to use for CFD analysis is provided.•A flow chart for the CFD methodology of bypass pneumatic conveying is demonstrated. This paper presents a review of numerical models for simulation of gas-solid flow in bypass pneumatic conveying. The kinetic theory, conventional frictional-kinetic model and a new modified frictional-kinetic model are described in some detail. The experimental results for pressure drops based on a number of test cases are presented and compared with numerical results obtained with different numerical models. The convergences of the modified frictional-kinetic model with different values of constants are also illustrated. Moreover, the fluidisation charts of different materials with flow mode boundaries are presented to provide guidance on what frictional approach to use for Computational Fluid Dynamics (CFD) analysis of gas-solid flow in a bypass pneumatic conveying system. Furthermore, a flow chart for the CFD simulation methodology of bypass pneumatic conveying is demonstrated. These outcomes and the associated design guidelines could assist in choosing the most appropriate models for simulation of pneumatic conveying.
doi_str_mv 10.1016/j.applthermaleng.2017.05.063
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1952088742</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359431116328034</els_id><sourcerecordid>1952088742</sourcerecordid><originalsourceid>FETCH-LOGICAL-c515t-9de50b3b9f95352ab0923d1477d4eb0ace6651a81198c7315532dcbd746d8fa13</originalsourceid><addsrcrecordid>eNqNkM1OwzAQhCMEEqXwDpbgmuCN4_xIXKpCAQmJC0jcLMfetK6SONhpUW-8A2_Ik-CqXLhx2jnMzGq-KLoCmgCF_HqdyGFoxxW6TrbYL5OUQpFQntCcHUUTKAsW85zmx0EzXsUZAziNzrxfUwppWWST6G2-uCXedJtWjsb2pMNxZbVt7XJHGuvIUvrY29Zo0rT2g5ie1LtBek-GHjddyCiibL_FnemX5Pvzi8yIw63Bj_PopJGtx4vfO41eF3cv84f46fn-cT57ihUHPsaVRk5rVldNxRlPZU2rlGnIikJnWFOpMM85yBKgKlXBgHOWalXrIst12Uhg0-jy0Ds4-75BP4q13bg-vBRQ8ZSWYWYaXDcHl3LWe4eNGJzppNsJoGLPUqzFX5Ziz1JQLgLLEF8c4hiWhHVOeGWwV6iNQzUKbc3_in4ALh6HMA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1952088742</pqid></control><display><type>article</type><title>CFD simulation methodology for gas-solid flow in bypass pneumatic conveying – A review</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Wang, Ying ; Williams, Kenneth ; Jones, Mark ; Chen, Bin</creator><creatorcontrib>Wang, Ying ; Williams, Kenneth ; Jones, Mark ; Chen, Bin</creatorcontrib><description>•Different numerical model are described and compared for pneumatic conveying.•Fluidisation charts of different materials with flow modes boundaries are showed.•Guidance on what frictional approach to use for CFD analysis is provided.•A flow chart for the CFD methodology of bypass pneumatic conveying is demonstrated. This paper presents a review of numerical models for simulation of gas-solid flow in bypass pneumatic conveying. The kinetic theory, conventional frictional-kinetic model and a new modified frictional-kinetic model are described in some detail. The experimental results for pressure drops based on a number of test cases are presented and compared with numerical results obtained with different numerical models. The convergences of the modified frictional-kinetic model with different values of constants are also illustrated. Moreover, the fluidisation charts of different materials with flow mode boundaries are presented to provide guidance on what frictional approach to use for Computational Fluid Dynamics (CFD) analysis of gas-solid flow in a bypass pneumatic conveying system. Furthermore, a flow chart for the CFD simulation methodology of bypass pneumatic conveying is demonstrated. These outcomes and the associated design guidelines could assist in choosing the most appropriate models for simulation of pneumatic conveying.</description><identifier>ISSN: 1359-4311</identifier><identifier>EISSN: 1873-5606</identifier><identifier>DOI: 10.1016/j.applthermaleng.2017.05.063</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Bypasses ; CFD simulation ; Computational fluid dynamics ; Computer simulation ; Conveying ; Flow charts ; Fluid dynamics ; Frictional-kinetic model ; Kinetic theory ; Mathematical models ; Pneumatic conveying ; Pneumatic conveyors ; Pneumatics ; Review ; Simulation</subject><ispartof>Applied thermal engineering, 2017-10, Vol.125, p.185-208</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Elsevier BV Oct 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c515t-9de50b3b9f95352ab0923d1477d4eb0ace6651a81198c7315532dcbd746d8fa13</citedby><cites>FETCH-LOGICAL-c515t-9de50b3b9f95352ab0923d1477d4eb0ace6651a81198c7315532dcbd746d8fa13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.applthermaleng.2017.05.063$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Wang, Ying</creatorcontrib><creatorcontrib>Williams, Kenneth</creatorcontrib><creatorcontrib>Jones, Mark</creatorcontrib><creatorcontrib>Chen, Bin</creatorcontrib><title>CFD simulation methodology for gas-solid flow in bypass pneumatic conveying – A review</title><title>Applied thermal engineering</title><description>•Different numerical model are described and compared for pneumatic conveying.•Fluidisation charts of different materials with flow modes boundaries are showed.•Guidance on what frictional approach to use for CFD analysis is provided.•A flow chart for the CFD methodology of bypass pneumatic conveying is demonstrated. This paper presents a review of numerical models for simulation of gas-solid flow in bypass pneumatic conveying. The kinetic theory, conventional frictional-kinetic model and a new modified frictional-kinetic model are described in some detail. The experimental results for pressure drops based on a number of test cases are presented and compared with numerical results obtained with different numerical models. The convergences of the modified frictional-kinetic model with different values of constants are also illustrated. Moreover, the fluidisation charts of different materials with flow mode boundaries are presented to provide guidance on what frictional approach to use for Computational Fluid Dynamics (CFD) analysis of gas-solid flow in a bypass pneumatic conveying system. Furthermore, a flow chart for the CFD simulation methodology of bypass pneumatic conveying is demonstrated. These outcomes and the associated design guidelines could assist in choosing the most appropriate models for simulation of pneumatic conveying.</description><subject>Bypasses</subject><subject>CFD simulation</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Conveying</subject><subject>Flow charts</subject><subject>Fluid dynamics</subject><subject>Frictional-kinetic model</subject><subject>Kinetic theory</subject><subject>Mathematical models</subject><subject>Pneumatic conveying</subject><subject>Pneumatic conveyors</subject><subject>Pneumatics</subject><subject>Review</subject><subject>Simulation</subject><issn>1359-4311</issn><issn>1873-5606</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqNkM1OwzAQhCMEEqXwDpbgmuCN4_xIXKpCAQmJC0jcLMfetK6SONhpUW-8A2_Ik-CqXLhx2jnMzGq-KLoCmgCF_HqdyGFoxxW6TrbYL5OUQpFQntCcHUUTKAsW85zmx0EzXsUZAziNzrxfUwppWWST6G2-uCXedJtWjsb2pMNxZbVt7XJHGuvIUvrY29Zo0rT2g5ie1LtBek-GHjddyCiibL_FnemX5Pvzi8yIw63Bj_PopJGtx4vfO41eF3cv84f46fn-cT57ihUHPsaVRk5rVldNxRlPZU2rlGnIikJnWFOpMM85yBKgKlXBgHOWalXrIst12Uhg0-jy0Ds4-75BP4q13bg-vBRQ8ZSWYWYaXDcHl3LWe4eNGJzppNsJoGLPUqzFX5Ziz1JQLgLLEF8c4hiWhHVOeGWwV6iNQzUKbc3_in4ALh6HMA</recordid><startdate>20171001</startdate><enddate>20171001</enddate><creator>Wang, Ying</creator><creator>Williams, Kenneth</creator><creator>Jones, Mark</creator><creator>Chen, Bin</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20171001</creationdate><title>CFD simulation methodology for gas-solid flow in bypass pneumatic conveying – A review</title><author>Wang, Ying ; Williams, Kenneth ; Jones, Mark ; Chen, Bin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c515t-9de50b3b9f95352ab0923d1477d4eb0ace6651a81198c7315532dcbd746d8fa13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Bypasses</topic><topic>CFD simulation</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Conveying</topic><topic>Flow charts</topic><topic>Fluid dynamics</topic><topic>Frictional-kinetic model</topic><topic>Kinetic theory</topic><topic>Mathematical models</topic><topic>Pneumatic conveying</topic><topic>Pneumatic conveyors</topic><topic>Pneumatics</topic><topic>Review</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Ying</creatorcontrib><creatorcontrib>Williams, Kenneth</creatorcontrib><creatorcontrib>Jones, Mark</creatorcontrib><creatorcontrib>Chen, Bin</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Applied thermal engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Ying</au><au>Williams, Kenneth</au><au>Jones, Mark</au><au>Chen, Bin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CFD simulation methodology for gas-solid flow in bypass pneumatic conveying – A review</atitle><jtitle>Applied thermal engineering</jtitle><date>2017-10-01</date><risdate>2017</risdate><volume>125</volume><spage>185</spage><epage>208</epage><pages>185-208</pages><issn>1359-4311</issn><eissn>1873-5606</eissn><abstract>•Different numerical model are described and compared for pneumatic conveying.•Fluidisation charts of different materials with flow modes boundaries are showed.•Guidance on what frictional approach to use for CFD analysis is provided.•A flow chart for the CFD methodology of bypass pneumatic conveying is demonstrated. This paper presents a review of numerical models for simulation of gas-solid flow in bypass pneumatic conveying. The kinetic theory, conventional frictional-kinetic model and a new modified frictional-kinetic model are described in some detail. The experimental results for pressure drops based on a number of test cases are presented and compared with numerical results obtained with different numerical models. The convergences of the modified frictional-kinetic model with different values of constants are also illustrated. Moreover, the fluidisation charts of different materials with flow mode boundaries are presented to provide guidance on what frictional approach to use for Computational Fluid Dynamics (CFD) analysis of gas-solid flow in a bypass pneumatic conveying system. Furthermore, a flow chart for the CFD simulation methodology of bypass pneumatic conveying is demonstrated. These outcomes and the associated design guidelines could assist in choosing the most appropriate models for simulation of pneumatic conveying.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.applthermaleng.2017.05.063</doi><tpages>24</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1359-4311
ispartof Applied thermal engineering, 2017-10, Vol.125, p.185-208
issn 1359-4311
1873-5606
language eng
recordid cdi_proquest_journals_1952088742
source Elsevier ScienceDirect Journals Complete
subjects Bypasses
CFD simulation
Computational fluid dynamics
Computer simulation
Conveying
Flow charts
Fluid dynamics
Frictional-kinetic model
Kinetic theory
Mathematical models
Pneumatic conveying
Pneumatic conveyors
Pneumatics
Review
Simulation
title CFD simulation methodology for gas-solid flow in bypass pneumatic conveying – A review
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T14%3A40%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CFD%20simulation%20methodology%20for%20gas-solid%20flow%20in%20bypass%20pneumatic%20conveying%20%E2%80%93%20A%20review&rft.jtitle=Applied%20thermal%20engineering&rft.au=Wang,%20Ying&rft.date=2017-10-01&rft.volume=125&rft.spage=185&rft.epage=208&rft.pages=185-208&rft.issn=1359-4311&rft.eissn=1873-5606&rft_id=info:doi/10.1016/j.applthermaleng.2017.05.063&rft_dat=%3Cproquest_cross%3E1952088742%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1952088742&rft_id=info:pmid/&rft_els_id=S1359431116328034&rfr_iscdi=true