CFD simulation methodology for gas-solid flow in bypass pneumatic conveying – A review
•Different numerical model are described and compared for pneumatic conveying.•Fluidisation charts of different materials with flow modes boundaries are showed.•Guidance on what frictional approach to use for CFD analysis is provided.•A flow chart for the CFD methodology of bypass pneumatic conveyin...
Gespeichert in:
Veröffentlicht in: | Applied thermal engineering 2017-10, Vol.125, p.185-208 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 208 |
---|---|
container_issue | |
container_start_page | 185 |
container_title | Applied thermal engineering |
container_volume | 125 |
creator | Wang, Ying Williams, Kenneth Jones, Mark Chen, Bin |
description | •Different numerical model are described and compared for pneumatic conveying.•Fluidisation charts of different materials with flow modes boundaries are showed.•Guidance on what frictional approach to use for CFD analysis is provided.•A flow chart for the CFD methodology of bypass pneumatic conveying is demonstrated.
This paper presents a review of numerical models for simulation of gas-solid flow in bypass pneumatic conveying. The kinetic theory, conventional frictional-kinetic model and a new modified frictional-kinetic model are described in some detail. The experimental results for pressure drops based on a number of test cases are presented and compared with numerical results obtained with different numerical models. The convergences of the modified frictional-kinetic model with different values of constants are also illustrated. Moreover, the fluidisation charts of different materials with flow mode boundaries are presented to provide guidance on what frictional approach to use for Computational Fluid Dynamics (CFD) analysis of gas-solid flow in a bypass pneumatic conveying system. Furthermore, a flow chart for the CFD simulation methodology of bypass pneumatic conveying is demonstrated. These outcomes and the associated design guidelines could assist in choosing the most appropriate models for simulation of pneumatic conveying. |
doi_str_mv | 10.1016/j.applthermaleng.2017.05.063 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1952088742</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359431116328034</els_id><sourcerecordid>1952088742</sourcerecordid><originalsourceid>FETCH-LOGICAL-c515t-9de50b3b9f95352ab0923d1477d4eb0ace6651a81198c7315532dcbd746d8fa13</originalsourceid><addsrcrecordid>eNqNkM1OwzAQhCMEEqXwDpbgmuCN4_xIXKpCAQmJC0jcLMfetK6SONhpUW-8A2_Ik-CqXLhx2jnMzGq-KLoCmgCF_HqdyGFoxxW6TrbYL5OUQpFQntCcHUUTKAsW85zmx0EzXsUZAziNzrxfUwppWWST6G2-uCXedJtWjsb2pMNxZbVt7XJHGuvIUvrY29Zo0rT2g5ie1LtBek-GHjddyCiibL_FnemX5Pvzi8yIw63Bj_PopJGtx4vfO41eF3cv84f46fn-cT57ihUHPsaVRk5rVldNxRlPZU2rlGnIikJnWFOpMM85yBKgKlXBgHOWalXrIst12Uhg0-jy0Ds4-75BP4q13bg-vBRQ8ZSWYWYaXDcHl3LWe4eNGJzppNsJoGLPUqzFX5Ziz1JQLgLLEF8c4hiWhHVOeGWwV6iNQzUKbc3_in4ALh6HMA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1952088742</pqid></control><display><type>article</type><title>CFD simulation methodology for gas-solid flow in bypass pneumatic conveying – A review</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Wang, Ying ; Williams, Kenneth ; Jones, Mark ; Chen, Bin</creator><creatorcontrib>Wang, Ying ; Williams, Kenneth ; Jones, Mark ; Chen, Bin</creatorcontrib><description>•Different numerical model are described and compared for pneumatic conveying.•Fluidisation charts of different materials with flow modes boundaries are showed.•Guidance on what frictional approach to use for CFD analysis is provided.•A flow chart for the CFD methodology of bypass pneumatic conveying is demonstrated.
This paper presents a review of numerical models for simulation of gas-solid flow in bypass pneumatic conveying. The kinetic theory, conventional frictional-kinetic model and a new modified frictional-kinetic model are described in some detail. The experimental results for pressure drops based on a number of test cases are presented and compared with numerical results obtained with different numerical models. The convergences of the modified frictional-kinetic model with different values of constants are also illustrated. Moreover, the fluidisation charts of different materials with flow mode boundaries are presented to provide guidance on what frictional approach to use for Computational Fluid Dynamics (CFD) analysis of gas-solid flow in a bypass pneumatic conveying system. Furthermore, a flow chart for the CFD simulation methodology of bypass pneumatic conveying is demonstrated. These outcomes and the associated design guidelines could assist in choosing the most appropriate models for simulation of pneumatic conveying.</description><identifier>ISSN: 1359-4311</identifier><identifier>EISSN: 1873-5606</identifier><identifier>DOI: 10.1016/j.applthermaleng.2017.05.063</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Bypasses ; CFD simulation ; Computational fluid dynamics ; Computer simulation ; Conveying ; Flow charts ; Fluid dynamics ; Frictional-kinetic model ; Kinetic theory ; Mathematical models ; Pneumatic conveying ; Pneumatic conveyors ; Pneumatics ; Review ; Simulation</subject><ispartof>Applied thermal engineering, 2017-10, Vol.125, p.185-208</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Elsevier BV Oct 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c515t-9de50b3b9f95352ab0923d1477d4eb0ace6651a81198c7315532dcbd746d8fa13</citedby><cites>FETCH-LOGICAL-c515t-9de50b3b9f95352ab0923d1477d4eb0ace6651a81198c7315532dcbd746d8fa13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.applthermaleng.2017.05.063$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Wang, Ying</creatorcontrib><creatorcontrib>Williams, Kenneth</creatorcontrib><creatorcontrib>Jones, Mark</creatorcontrib><creatorcontrib>Chen, Bin</creatorcontrib><title>CFD simulation methodology for gas-solid flow in bypass pneumatic conveying – A review</title><title>Applied thermal engineering</title><description>•Different numerical model are described and compared for pneumatic conveying.•Fluidisation charts of different materials with flow modes boundaries are showed.•Guidance on what frictional approach to use for CFD analysis is provided.•A flow chart for the CFD methodology of bypass pneumatic conveying is demonstrated.
This paper presents a review of numerical models for simulation of gas-solid flow in bypass pneumatic conveying. The kinetic theory, conventional frictional-kinetic model and a new modified frictional-kinetic model are described in some detail. The experimental results for pressure drops based on a number of test cases are presented and compared with numerical results obtained with different numerical models. The convergences of the modified frictional-kinetic model with different values of constants are also illustrated. Moreover, the fluidisation charts of different materials with flow mode boundaries are presented to provide guidance on what frictional approach to use for Computational Fluid Dynamics (CFD) analysis of gas-solid flow in a bypass pneumatic conveying system. Furthermore, a flow chart for the CFD simulation methodology of bypass pneumatic conveying is demonstrated. These outcomes and the associated design guidelines could assist in choosing the most appropriate models for simulation of pneumatic conveying.</description><subject>Bypasses</subject><subject>CFD simulation</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Conveying</subject><subject>Flow charts</subject><subject>Fluid dynamics</subject><subject>Frictional-kinetic model</subject><subject>Kinetic theory</subject><subject>Mathematical models</subject><subject>Pneumatic conveying</subject><subject>Pneumatic conveyors</subject><subject>Pneumatics</subject><subject>Review</subject><subject>Simulation</subject><issn>1359-4311</issn><issn>1873-5606</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqNkM1OwzAQhCMEEqXwDpbgmuCN4_xIXKpCAQmJC0jcLMfetK6SONhpUW-8A2_Ik-CqXLhx2jnMzGq-KLoCmgCF_HqdyGFoxxW6TrbYL5OUQpFQntCcHUUTKAsW85zmx0EzXsUZAziNzrxfUwppWWST6G2-uCXedJtWjsb2pMNxZbVt7XJHGuvIUvrY29Zo0rT2g5ie1LtBek-GHjddyCiibL_FnemX5Pvzi8yIw63Bj_PopJGtx4vfO41eF3cv84f46fn-cT57ihUHPsaVRk5rVldNxRlPZU2rlGnIikJnWFOpMM85yBKgKlXBgHOWalXrIst12Uhg0-jy0Ds4-75BP4q13bg-vBRQ8ZSWYWYaXDcHl3LWe4eNGJzppNsJoGLPUqzFX5Ziz1JQLgLLEF8c4hiWhHVOeGWwV6iNQzUKbc3_in4ALh6HMA</recordid><startdate>20171001</startdate><enddate>20171001</enddate><creator>Wang, Ying</creator><creator>Williams, Kenneth</creator><creator>Jones, Mark</creator><creator>Chen, Bin</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20171001</creationdate><title>CFD simulation methodology for gas-solid flow in bypass pneumatic conveying – A review</title><author>Wang, Ying ; Williams, Kenneth ; Jones, Mark ; Chen, Bin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c515t-9de50b3b9f95352ab0923d1477d4eb0ace6651a81198c7315532dcbd746d8fa13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Bypasses</topic><topic>CFD simulation</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Conveying</topic><topic>Flow charts</topic><topic>Fluid dynamics</topic><topic>Frictional-kinetic model</topic><topic>Kinetic theory</topic><topic>Mathematical models</topic><topic>Pneumatic conveying</topic><topic>Pneumatic conveyors</topic><topic>Pneumatics</topic><topic>Review</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Ying</creatorcontrib><creatorcontrib>Williams, Kenneth</creatorcontrib><creatorcontrib>Jones, Mark</creatorcontrib><creatorcontrib>Chen, Bin</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Applied thermal engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Ying</au><au>Williams, Kenneth</au><au>Jones, Mark</au><au>Chen, Bin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CFD simulation methodology for gas-solid flow in bypass pneumatic conveying – A review</atitle><jtitle>Applied thermal engineering</jtitle><date>2017-10-01</date><risdate>2017</risdate><volume>125</volume><spage>185</spage><epage>208</epage><pages>185-208</pages><issn>1359-4311</issn><eissn>1873-5606</eissn><abstract>•Different numerical model are described and compared for pneumatic conveying.•Fluidisation charts of different materials with flow modes boundaries are showed.•Guidance on what frictional approach to use for CFD analysis is provided.•A flow chart for the CFD methodology of bypass pneumatic conveying is demonstrated.
This paper presents a review of numerical models for simulation of gas-solid flow in bypass pneumatic conveying. The kinetic theory, conventional frictional-kinetic model and a new modified frictional-kinetic model are described in some detail. The experimental results for pressure drops based on a number of test cases are presented and compared with numerical results obtained with different numerical models. The convergences of the modified frictional-kinetic model with different values of constants are also illustrated. Moreover, the fluidisation charts of different materials with flow mode boundaries are presented to provide guidance on what frictional approach to use for Computational Fluid Dynamics (CFD) analysis of gas-solid flow in a bypass pneumatic conveying system. Furthermore, a flow chart for the CFD simulation methodology of bypass pneumatic conveying is demonstrated. These outcomes and the associated design guidelines could assist in choosing the most appropriate models for simulation of pneumatic conveying.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.applthermaleng.2017.05.063</doi><tpages>24</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1359-4311 |
ispartof | Applied thermal engineering, 2017-10, Vol.125, p.185-208 |
issn | 1359-4311 1873-5606 |
language | eng |
recordid | cdi_proquest_journals_1952088742 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Bypasses CFD simulation Computational fluid dynamics Computer simulation Conveying Flow charts Fluid dynamics Frictional-kinetic model Kinetic theory Mathematical models Pneumatic conveying Pneumatic conveyors Pneumatics Review Simulation |
title | CFD simulation methodology for gas-solid flow in bypass pneumatic conveying – A review |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T14%3A40%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CFD%20simulation%20methodology%20for%20gas-solid%20flow%20in%20bypass%20pneumatic%20conveying%20%E2%80%93%20A%20review&rft.jtitle=Applied%20thermal%20engineering&rft.au=Wang,%20Ying&rft.date=2017-10-01&rft.volume=125&rft.spage=185&rft.epage=208&rft.pages=185-208&rft.issn=1359-4311&rft.eissn=1873-5606&rft_id=info:doi/10.1016/j.applthermaleng.2017.05.063&rft_dat=%3Cproquest_cross%3E1952088742%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1952088742&rft_id=info:pmid/&rft_els_id=S1359431116328034&rfr_iscdi=true |