Quiet direct simulation of Coulomb collisions
Quiet direct simulation Monte Carlo (QDSMC) is a new particle simulation technique that is applicable to a broad range of applications where the underlying system dynamics obey Fokker Planck equations. These include hydrodynamics, radiation transport, magnetohydrodynamics, diffusion, and collisional...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on plasma science 2003-02, Vol.31 (1), p.19-24 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 24 |
---|---|
container_issue | 1 |
container_start_page | 19 |
container_title | IEEE transactions on plasma science |
container_volume | 31 |
creator | Albright, B.J. Winske, D. Lemons, D.S. Daughton, W. Jones, M.E. |
description | Quiet direct simulation Monte Carlo (QDSMC) is a new particle simulation technique that is applicable to a broad range of applications where the underlying system dynamics obey Fokker Planck equations. These include hydrodynamics, radiation transport, magnetohydrodynamics, diffusion, and collisional kinetic plasmas. At the beginning of each time step in QDSMC, the weights and abscissas of Gaussian-Hermite quadrature are used to deterministically create particles to sample the random process. At the end of the time step, particles are gathered to the computational mesh to obtain updated distributions of conserved quantities on the mesh and then the particles are destroyed. The creation and destruction of particles allows arbitrary dynamical range to be accessed quiescently with only a small number of particles per computational cell. The application of QDSMC to the simulation of Coulomb collisions is considered in this report, and the method is demonstrated on problems involving the collisional relaxation of non-Maxwellian distributions. |
doi_str_mv | 10.1109/TPS.2003.808886 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_195170062</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1190964</ieee_id><sourcerecordid>336677891</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-f7123392ebf99cc2c683c6f4e77f7e5a2061068fa32a2e1edba766cf485580d83</originalsourceid><addsrcrecordid>eNqFkc1LAzEQxYMoWKtnD14WQfGy7eQ7OUrxCwoq1nNI0wRSdjd1s3vwv3dLC4IHexqY-c17zDyELjFMMAY9Xbx9TAgAnShQSokjNMKa6lJTyY_RCEDTkipMT9FZzmsAzDiQESrf--i7YhVb77oix7qvbBdTU6RQzFJfpXpZuFRVMQ_NfI5Ogq2yv9jXMfp8fFjMnsv569PL7H5eOsZIVwaJCaWa-GXQ2jnihKJOBOalDNJzS0BgECpYSizx2K-WVgrhAlOcK1gpOka3O91Nm756nztTx-x8VdnGpz4bomE4TurDoOJCCckPg1IzLcnW-u5fEIvhOMIp35pf_0HXqW-b4TEGa44lgCADNN1Brk05tz6YTRtr234bDGYbnBmCM9vgzC64YeNmL2uzs1VobeNi_l1jQkot2cBd7bjovf8dYw1aMPoDiA-eVQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195170062</pqid></control><display><type>article</type><title>Quiet direct simulation of Coulomb collisions</title><source>IEEE Electronic Library (IEL)</source><creator>Albright, B.J. ; Winske, D. ; Lemons, D.S. ; Daughton, W. ; Jones, M.E.</creator><creatorcontrib>Albright, B.J. ; Winske, D. ; Lemons, D.S. ; Daughton, W. ; Jones, M.E.</creatorcontrib><description>Quiet direct simulation Monte Carlo (QDSMC) is a new particle simulation technique that is applicable to a broad range of applications where the underlying system dynamics obey Fokker Planck equations. These include hydrodynamics, radiation transport, magnetohydrodynamics, diffusion, and collisional kinetic plasmas. At the beginning of each time step in QDSMC, the weights and abscissas of Gaussian-Hermite quadrature are used to deterministically create particles to sample the random process. At the end of the time step, particles are gathered to the computational mesh to obtain updated distributions of conserved quantities on the mesh and then the particles are destroyed. The creation and destruction of particles allows arbitrary dynamical range to be accessed quiescently with only a small number of particles per computational cell. The application of QDSMC to the simulation of Coulomb collisions is considered in this report, and the method is demonstrated on problems involving the collisional relaxation of non-Maxwellian distributions.</description><identifier>ISSN: 0093-3813</identifier><identifier>EISSN: 1939-9375</identifier><identifier>DOI: 10.1109/TPS.2003.808886</identifier><identifier>CODEN: ITPSBD</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Computation ; Computational fluid dynamics ; Computer simulation ; Coulomb collisions ; Equations ; Exact sciences and technology ; Finite element method ; Fluid flow ; Fokker-Planck equation ; Fokker-plank and vlasov equations ; Gaussian processes ; Hydrodynamics ; Kinetic theory ; Magnetohydrodynamics ; Mathematical analysis ; Monte Carlo methods ; Monte Carlo simulation ; Particle physics ; Particle-in-cell method ; Physics ; Physics of gases, plasmas and electric discharges ; Physics of plasmas and electric discharges ; Plasma applications ; Plasma simulation ; Plasma transport processes ; Random processes</subject><ispartof>IEEE transactions on plasma science, 2003-02, Vol.31 (1), p.19-24</ispartof><rights>2003 INIST-CNRS</rights><rights>Copyright Institute of Electrical and Electronics Engineers, Inc. (IEEE) Feb 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-f7123392ebf99cc2c683c6f4e77f7e5a2061068fa32a2e1edba766cf485580d83</citedby><cites>FETCH-LOGICAL-c442t-f7123392ebf99cc2c683c6f4e77f7e5a2061068fa32a2e1edba766cf485580d83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1190964$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27907,27908,54741</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1190964$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14677974$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Albright, B.J.</creatorcontrib><creatorcontrib>Winske, D.</creatorcontrib><creatorcontrib>Lemons, D.S.</creatorcontrib><creatorcontrib>Daughton, W.</creatorcontrib><creatorcontrib>Jones, M.E.</creatorcontrib><title>Quiet direct simulation of Coulomb collisions</title><title>IEEE transactions on plasma science</title><addtitle>TPS</addtitle><description>Quiet direct simulation Monte Carlo (QDSMC) is a new particle simulation technique that is applicable to a broad range of applications where the underlying system dynamics obey Fokker Planck equations. These include hydrodynamics, radiation transport, magnetohydrodynamics, diffusion, and collisional kinetic plasmas. At the beginning of each time step in QDSMC, the weights and abscissas of Gaussian-Hermite quadrature are used to deterministically create particles to sample the random process. At the end of the time step, particles are gathered to the computational mesh to obtain updated distributions of conserved quantities on the mesh and then the particles are destroyed. The creation and destruction of particles allows arbitrary dynamical range to be accessed quiescently with only a small number of particles per computational cell. The application of QDSMC to the simulation of Coulomb collisions is considered in this report, and the method is demonstrated on problems involving the collisional relaxation of non-Maxwellian distributions.</description><subject>Computation</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Coulomb collisions</subject><subject>Equations</subject><subject>Exact sciences and technology</subject><subject>Finite element method</subject><subject>Fluid flow</subject><subject>Fokker-Planck equation</subject><subject>Fokker-plank and vlasov equations</subject><subject>Gaussian processes</subject><subject>Hydrodynamics</subject><subject>Kinetic theory</subject><subject>Magnetohydrodynamics</subject><subject>Mathematical analysis</subject><subject>Monte Carlo methods</subject><subject>Monte Carlo simulation</subject><subject>Particle physics</subject><subject>Particle-in-cell method</subject><subject>Physics</subject><subject>Physics of gases, plasmas and electric discharges</subject><subject>Physics of plasmas and electric discharges</subject><subject>Plasma applications</subject><subject>Plasma simulation</subject><subject>Plasma transport processes</subject><subject>Random processes</subject><issn>0093-3813</issn><issn>1939-9375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFkc1LAzEQxYMoWKtnD14WQfGy7eQ7OUrxCwoq1nNI0wRSdjd1s3vwv3dLC4IHexqY-c17zDyELjFMMAY9Xbx9TAgAnShQSokjNMKa6lJTyY_RCEDTkipMT9FZzmsAzDiQESrf--i7YhVb77oix7qvbBdTU6RQzFJfpXpZuFRVMQ_NfI5Ogq2yv9jXMfp8fFjMnsv569PL7H5eOsZIVwaJCaWa-GXQ2jnihKJOBOalDNJzS0BgECpYSizx2K-WVgrhAlOcK1gpOka3O91Nm756nztTx-x8VdnGpz4bomE4TurDoOJCCckPg1IzLcnW-u5fEIvhOMIp35pf_0HXqW-b4TEGa44lgCADNN1Brk05tz6YTRtr234bDGYbnBmCM9vgzC64YeNmL2uzs1VobeNi_l1jQkot2cBd7bjovf8dYw1aMPoDiA-eVQ</recordid><startdate>20030201</startdate><enddate>20030201</enddate><creator>Albright, B.J.</creator><creator>Winske, D.</creator><creator>Lemons, D.S.</creator><creator>Daughton, W.</creator><creator>Jones, M.E.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>7TB</scope><scope>KR7</scope></search><sort><creationdate>20030201</creationdate><title>Quiet direct simulation of Coulomb collisions</title><author>Albright, B.J. ; Winske, D. ; Lemons, D.S. ; Daughton, W. ; Jones, M.E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-f7123392ebf99cc2c683c6f4e77f7e5a2061068fa32a2e1edba766cf485580d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Computation</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Coulomb collisions</topic><topic>Equations</topic><topic>Exact sciences and technology</topic><topic>Finite element method</topic><topic>Fluid flow</topic><topic>Fokker-Planck equation</topic><topic>Fokker-plank and vlasov equations</topic><topic>Gaussian processes</topic><topic>Hydrodynamics</topic><topic>Kinetic theory</topic><topic>Magnetohydrodynamics</topic><topic>Mathematical analysis</topic><topic>Monte Carlo methods</topic><topic>Monte Carlo simulation</topic><topic>Particle physics</topic><topic>Particle-in-cell method</topic><topic>Physics</topic><topic>Physics of gases, plasmas and electric discharges</topic><topic>Physics of plasmas and electric discharges</topic><topic>Plasma applications</topic><topic>Plasma simulation</topic><topic>Plasma transport processes</topic><topic>Random processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Albright, B.J.</creatorcontrib><creatorcontrib>Winske, D.</creatorcontrib><creatorcontrib>Lemons, D.S.</creatorcontrib><creatorcontrib>Daughton, W.</creatorcontrib><creatorcontrib>Jones, M.E.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Civil Engineering Abstracts</collection><jtitle>IEEE transactions on plasma science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Albright, B.J.</au><au>Winske, D.</au><au>Lemons, D.S.</au><au>Daughton, W.</au><au>Jones, M.E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quiet direct simulation of Coulomb collisions</atitle><jtitle>IEEE transactions on plasma science</jtitle><stitle>TPS</stitle><date>2003-02-01</date><risdate>2003</risdate><volume>31</volume><issue>1</issue><spage>19</spage><epage>24</epage><pages>19-24</pages><issn>0093-3813</issn><eissn>1939-9375</eissn><coden>ITPSBD</coden><abstract>Quiet direct simulation Monte Carlo (QDSMC) is a new particle simulation technique that is applicable to a broad range of applications where the underlying system dynamics obey Fokker Planck equations. These include hydrodynamics, radiation transport, magnetohydrodynamics, diffusion, and collisional kinetic plasmas. At the beginning of each time step in QDSMC, the weights and abscissas of Gaussian-Hermite quadrature are used to deterministically create particles to sample the random process. At the end of the time step, particles are gathered to the computational mesh to obtain updated distributions of conserved quantities on the mesh and then the particles are destroyed. The creation and destruction of particles allows arbitrary dynamical range to be accessed quiescently with only a small number of particles per computational cell. The application of QDSMC to the simulation of Coulomb collisions is considered in this report, and the method is demonstrated on problems involving the collisional relaxation of non-Maxwellian distributions.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TPS.2003.808886</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0093-3813 |
ispartof | IEEE transactions on plasma science, 2003-02, Vol.31 (1), p.19-24 |
issn | 0093-3813 1939-9375 |
language | eng |
recordid | cdi_proquest_journals_195170062 |
source | IEEE Electronic Library (IEL) |
subjects | Computation Computational fluid dynamics Computer simulation Coulomb collisions Equations Exact sciences and technology Finite element method Fluid flow Fokker-Planck equation Fokker-plank and vlasov equations Gaussian processes Hydrodynamics Kinetic theory Magnetohydrodynamics Mathematical analysis Monte Carlo methods Monte Carlo simulation Particle physics Particle-in-cell method Physics Physics of gases, plasmas and electric discharges Physics of plasmas and electric discharges Plasma applications Plasma simulation Plasma transport processes Random processes |
title | Quiet direct simulation of Coulomb collisions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T06%3A08%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quiet%20direct%20simulation%20of%20Coulomb%20collisions&rft.jtitle=IEEE%20transactions%20on%20plasma%20science&rft.au=Albright,%20B.J.&rft.date=2003-02-01&rft.volume=31&rft.issue=1&rft.spage=19&rft.epage=24&rft.pages=19-24&rft.issn=0093-3813&rft.eissn=1939-9375&rft.coden=ITPSBD&rft_id=info:doi/10.1109/TPS.2003.808886&rft_dat=%3Cproquest_RIE%3E336677891%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=195170062&rft_id=info:pmid/&rft_ieee_id=1190964&rfr_iscdi=true |