Strategy for CYP3A Induction Risk Assessment from Preclinical Signal to Human: a Case Example of a Late-Stage Discovery Compound

Purpose The exposure of G2917 decreased by four-fold at oral doses of 100 mg/kg twice daily for seven days in cynomolgus monkeys. Additional investigative work was conducted to understand: (1) the causes for the significant reduction in G2917 exposure in monkeys; (2) the extrapolation of in vitro in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pharmaceutical research 2017-11, Vol.34 (11), p.2403-2414
Hauptverfasser: Mao, Jialin, Fan, Peter, Wong, Susan, Wang, Jianshuang, Ismaili, Moulay Hicham Alaoui, Dean, Brian, Hop, Cornelis E. C. A., Wright, Matthew, Chen, Yuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2414
container_issue 11
container_start_page 2403
container_title Pharmaceutical research
container_volume 34
creator Mao, Jialin
Fan, Peter
Wong, Susan
Wang, Jianshuang
Ismaili, Moulay Hicham Alaoui
Dean, Brian
Hop, Cornelis E. C. A.
Wright, Matthew
Chen, Yuan
description Purpose The exposure of G2917 decreased by four-fold at oral doses of 100 mg/kg twice daily for seven days in cynomolgus monkeys. Additional investigative work was conducted to understand: (1) the causes for the significant reduction in G2917 exposure in monkeys; (2) the extrapolation of in vitro induction data to in vivo findings in monkeys, and (3) the relevance of this pre-clinical finding to humans at the projected human efficacious dose. Methods Pharmacokinetic and induction potency ( in vitro and in vivo ) of G2917 in monkeys, and the in vitro human induction potency were studied. The hepatic CYP3A biomarkers 4β-hydroxycholesterol (4β-HC) and 6β-hydroxycortisol/cortisol ratio (6β-OHC/C) were monitored in in vivo studies. The static mechanistic model was used to quantitatively understand the in vitro - in vivo extrapolation (IVIVE) on the magnitude of induction retrospectively. Physiologically based pharmacokinetic (PBPK) modeling was used to predict the human pharmacokinetics and induction-based drug-drug interactions (DDI). Results All in vitro and in vivo data indicate that the significant reduction in exposure of G2917 in monkeys is caused by auto-induction of CYP3A. The mechanistic understanding of IVIVE of G2917 induction in monkey provides higher confidence in the induction risk prediction in human using the PBPK modeling. PBPK model analysis predicted minimum auto-induction and DDI liability in humans at the predicted efficacious dose. Conclusions The learning of this example provided a strategy to address the human CYP3A induction risk prospectively when there is an auto-induction finding in preclinical toxicology study.
doi_str_mv 10.1007/s11095-017-2246-8
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_1951508864</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A747438826</galeid><sourcerecordid>A747438826</sourcerecordid><originalsourceid>FETCH-LOGICAL-c439t-2c9073b99a4511d139419105bc37bc82f437572e798ced306cb1fa75a9c997e33</originalsourceid><addsrcrecordid>eNp1kV9vFCEUxYnR2LX6AXwxJD5P5QKzgG-bsbZNNrFxNdEnwjDMhDoDK8wY960fXZqt_xINDze5_M69Bw5Cz4GcASHiVQYgqq4IiIpSvq7kA7SCWrBKEf7pIVoRQXklBYcT9CTnG0KIBMUfoxMqJdRM0RW63c3JzG444D4m3Hy-Zht8FbrFzj4G_N7nL3iTs8t5cmHGfYoTvk7Ojj54a0a880MoZY74cplMeI0Nbkx2-Py7mfajw7EvnW1ZUO1mMzj8xmcbv7l0wE2c9nEJ3VP0qDdjds_u6yn6-Pb8Q3NZbd9dXDWbbWU5U3NFrSKCtUoZXgN0wBQHBaRuLROtlbTnTNSCOqGkdR0ja9tCb0RtlFVKOMZO0cvj3H2KXxeXZ30Tl1TMZw2qhppIuea_qcGMTvvQx_I9diqu9UZwwZmUdF2os39Q5XRu8jYG1_vS_0sAR4FNMefker1PfjLpoIHouyj1MUpdotR3UWpZNC_uDS_t5Lpfip_ZFYAegVyuwuDSHy_679QfXoOmpA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1951508864</pqid></control><display><type>article</type><title>Strategy for CYP3A Induction Risk Assessment from Preclinical Signal to Human: a Case Example of a Late-Stage Discovery Compound</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Mao, Jialin ; Fan, Peter ; Wong, Susan ; Wang, Jianshuang ; Ismaili, Moulay Hicham Alaoui ; Dean, Brian ; Hop, Cornelis E. C. A. ; Wright, Matthew ; Chen, Yuan</creator><creatorcontrib>Mao, Jialin ; Fan, Peter ; Wong, Susan ; Wang, Jianshuang ; Ismaili, Moulay Hicham Alaoui ; Dean, Brian ; Hop, Cornelis E. C. A. ; Wright, Matthew ; Chen, Yuan</creatorcontrib><description>Purpose The exposure of G2917 decreased by four-fold at oral doses of 100 mg/kg twice daily for seven days in cynomolgus monkeys. Additional investigative work was conducted to understand: (1) the causes for the significant reduction in G2917 exposure in monkeys; (2) the extrapolation of in vitro induction data to in vivo findings in monkeys, and (3) the relevance of this pre-clinical finding to humans at the projected human efficacious dose. Methods Pharmacokinetic and induction potency ( in vitro and in vivo ) of G2917 in monkeys, and the in vitro human induction potency were studied. The hepatic CYP3A biomarkers 4β-hydroxycholesterol (4β-HC) and 6β-hydroxycortisol/cortisol ratio (6β-OHC/C) were monitored in in vivo studies. The static mechanistic model was used to quantitatively understand the in vitro - in vivo extrapolation (IVIVE) on the magnitude of induction retrospectively. Physiologically based pharmacokinetic (PBPK) modeling was used to predict the human pharmacokinetics and induction-based drug-drug interactions (DDI). Results All in vitro and in vivo data indicate that the significant reduction in exposure of G2917 in monkeys is caused by auto-induction of CYP3A. The mechanistic understanding of IVIVE of G2917 induction in monkey provides higher confidence in the induction risk prediction in human using the PBPK modeling. PBPK model analysis predicted minimum auto-induction and DDI liability in humans at the predicted efficacious dose. Conclusions The learning of this example provided a strategy to address the human CYP3A induction risk prospectively when there is an auto-induction finding in preclinical toxicology study.</description><identifier>ISSN: 0724-8741</identifier><identifier>EISSN: 1573-904X</identifier><identifier>DOI: 10.1007/s11095-017-2246-8</identifier><identifier>PMID: 28815392</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Administration, Oral ; Animals ; Biochemistry ; Bioindicators ; Biomedical and Life Sciences ; Biomedical Engineering and Bioengineering ; Biomedicine ; Computer Simulation ; Cortisol ; Cytochrome P-450 CYP3A - biosynthesis ; Drug Discovery ; Drug dosages ; Drug Interactions ; Enzyme Induction ; Exposure ; Extrapolation ; Humans ; Hydrocortisone - analogs &amp; derivatives ; Hydrocortisone - metabolism ; Hydroxycholesterols - metabolism ; Liability ; Liver ; Liver - drug effects ; Liver - metabolism ; Macaca fascicularis ; Medical Law ; Medical research ; Medicine, Experimental ; Midazolam - pharmacology ; Models, Biological ; Monkeys ; Pharmacokinetics ; Pharmacology/Toxicology ; Pharmacy ; Research Paper ; Rifampin - pharmacology ; Risk assessment ; RNA, Messenger - biosynthesis ; Toxicology</subject><ispartof>Pharmaceutical research, 2017-11, Vol.34 (11), p.2403-2414</ispartof><rights>Springer Science+Business Media, LLC 2017</rights><rights>COPYRIGHT 2017 Springer</rights><rights>Pharmaceutical Research is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c439t-2c9073b99a4511d139419105bc37bc82f437572e798ced306cb1fa75a9c997e33</citedby><cites>FETCH-LOGICAL-c439t-2c9073b99a4511d139419105bc37bc82f437572e798ced306cb1fa75a9c997e33</cites><orcidid>0000-0001-9283-4819</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11095-017-2246-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11095-017-2246-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28815392$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mao, Jialin</creatorcontrib><creatorcontrib>Fan, Peter</creatorcontrib><creatorcontrib>Wong, Susan</creatorcontrib><creatorcontrib>Wang, Jianshuang</creatorcontrib><creatorcontrib>Ismaili, Moulay Hicham Alaoui</creatorcontrib><creatorcontrib>Dean, Brian</creatorcontrib><creatorcontrib>Hop, Cornelis E. C. A.</creatorcontrib><creatorcontrib>Wright, Matthew</creatorcontrib><creatorcontrib>Chen, Yuan</creatorcontrib><title>Strategy for CYP3A Induction Risk Assessment from Preclinical Signal to Human: a Case Example of a Late-Stage Discovery Compound</title><title>Pharmaceutical research</title><addtitle>Pharm Res</addtitle><addtitle>Pharm Res</addtitle><description>Purpose The exposure of G2917 decreased by four-fold at oral doses of 100 mg/kg twice daily for seven days in cynomolgus monkeys. Additional investigative work was conducted to understand: (1) the causes for the significant reduction in G2917 exposure in monkeys; (2) the extrapolation of in vitro induction data to in vivo findings in monkeys, and (3) the relevance of this pre-clinical finding to humans at the projected human efficacious dose. Methods Pharmacokinetic and induction potency ( in vitro and in vivo ) of G2917 in monkeys, and the in vitro human induction potency were studied. The hepatic CYP3A biomarkers 4β-hydroxycholesterol (4β-HC) and 6β-hydroxycortisol/cortisol ratio (6β-OHC/C) were monitored in in vivo studies. The static mechanistic model was used to quantitatively understand the in vitro - in vivo extrapolation (IVIVE) on the magnitude of induction retrospectively. Physiologically based pharmacokinetic (PBPK) modeling was used to predict the human pharmacokinetics and induction-based drug-drug interactions (DDI). Results All in vitro and in vivo data indicate that the significant reduction in exposure of G2917 in monkeys is caused by auto-induction of CYP3A. The mechanistic understanding of IVIVE of G2917 induction in monkey provides higher confidence in the induction risk prediction in human using the PBPK modeling. PBPK model analysis predicted minimum auto-induction and DDI liability in humans at the predicted efficacious dose. Conclusions The learning of this example provided a strategy to address the human CYP3A induction risk prospectively when there is an auto-induction finding in preclinical toxicology study.</description><subject>Administration, Oral</subject><subject>Animals</subject><subject>Biochemistry</subject><subject>Bioindicators</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedicine</subject><subject>Computer Simulation</subject><subject>Cortisol</subject><subject>Cytochrome P-450 CYP3A - biosynthesis</subject><subject>Drug Discovery</subject><subject>Drug dosages</subject><subject>Drug Interactions</subject><subject>Enzyme Induction</subject><subject>Exposure</subject><subject>Extrapolation</subject><subject>Humans</subject><subject>Hydrocortisone - analogs &amp; derivatives</subject><subject>Hydrocortisone - metabolism</subject><subject>Hydroxycholesterols - metabolism</subject><subject>Liability</subject><subject>Liver</subject><subject>Liver - drug effects</subject><subject>Liver - metabolism</subject><subject>Macaca fascicularis</subject><subject>Medical Law</subject><subject>Medical research</subject><subject>Medicine, Experimental</subject><subject>Midazolam - pharmacology</subject><subject>Models, Biological</subject><subject>Monkeys</subject><subject>Pharmacokinetics</subject><subject>Pharmacology/Toxicology</subject><subject>Pharmacy</subject><subject>Research Paper</subject><subject>Rifampin - pharmacology</subject><subject>Risk assessment</subject><subject>RNA, Messenger - biosynthesis</subject><subject>Toxicology</subject><issn>0724-8741</issn><issn>1573-904X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><recordid>eNp1kV9vFCEUxYnR2LX6AXwxJD5P5QKzgG-bsbZNNrFxNdEnwjDMhDoDK8wY960fXZqt_xINDze5_M69Bw5Cz4GcASHiVQYgqq4IiIpSvq7kA7SCWrBKEf7pIVoRQXklBYcT9CTnG0KIBMUfoxMqJdRM0RW63c3JzG444D4m3Hy-Zht8FbrFzj4G_N7nL3iTs8t5cmHGfYoTvk7Ojj54a0a880MoZY74cplMeI0Nbkx2-Py7mfajw7EvnW1ZUO1mMzj8xmcbv7l0wE2c9nEJ3VP0qDdjds_u6yn6-Pb8Q3NZbd9dXDWbbWU5U3NFrSKCtUoZXgN0wBQHBaRuLROtlbTnTNSCOqGkdR0ja9tCb0RtlFVKOMZO0cvj3H2KXxeXZ30Tl1TMZw2qhppIuea_qcGMTvvQx_I9diqu9UZwwZmUdF2os39Q5XRu8jYG1_vS_0sAR4FNMefker1PfjLpoIHouyj1MUpdotR3UWpZNC_uDS_t5Lpfip_ZFYAegVyuwuDSHy_679QfXoOmpA</recordid><startdate>20171101</startdate><enddate>20171101</enddate><creator>Mao, Jialin</creator><creator>Fan, Peter</creator><creator>Wong, Susan</creator><creator>Wang, Jianshuang</creator><creator>Ismaili, Moulay Hicham Alaoui</creator><creator>Dean, Brian</creator><creator>Hop, Cornelis E. C. A.</creator><creator>Wright, Matthew</creator><creator>Chen, Yuan</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>M1P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-9283-4819</orcidid></search><sort><creationdate>20171101</creationdate><title>Strategy for CYP3A Induction Risk Assessment from Preclinical Signal to Human: a Case Example of a Late-Stage Discovery Compound</title><author>Mao, Jialin ; Fan, Peter ; Wong, Susan ; Wang, Jianshuang ; Ismaili, Moulay Hicham Alaoui ; Dean, Brian ; Hop, Cornelis E. C. A. ; Wright, Matthew ; Chen, Yuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c439t-2c9073b99a4511d139419105bc37bc82f437572e798ced306cb1fa75a9c997e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Administration, Oral</topic><topic>Animals</topic><topic>Biochemistry</topic><topic>Bioindicators</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedicine</topic><topic>Computer Simulation</topic><topic>Cortisol</topic><topic>Cytochrome P-450 CYP3A - biosynthesis</topic><topic>Drug Discovery</topic><topic>Drug dosages</topic><topic>Drug Interactions</topic><topic>Enzyme Induction</topic><topic>Exposure</topic><topic>Extrapolation</topic><topic>Humans</topic><topic>Hydrocortisone - analogs &amp; derivatives</topic><topic>Hydrocortisone - metabolism</topic><topic>Hydroxycholesterols - metabolism</topic><topic>Liability</topic><topic>Liver</topic><topic>Liver - drug effects</topic><topic>Liver - metabolism</topic><topic>Macaca fascicularis</topic><topic>Medical Law</topic><topic>Medical research</topic><topic>Medicine, Experimental</topic><topic>Midazolam - pharmacology</topic><topic>Models, Biological</topic><topic>Monkeys</topic><topic>Pharmacokinetics</topic><topic>Pharmacology/Toxicology</topic><topic>Pharmacy</topic><topic>Research Paper</topic><topic>Rifampin - pharmacology</topic><topic>Risk assessment</topic><topic>RNA, Messenger - biosynthesis</topic><topic>Toxicology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mao, Jialin</creatorcontrib><creatorcontrib>Fan, Peter</creatorcontrib><creatorcontrib>Wong, Susan</creatorcontrib><creatorcontrib>Wang, Jianshuang</creatorcontrib><creatorcontrib>Ismaili, Moulay Hicham Alaoui</creatorcontrib><creatorcontrib>Dean, Brian</creatorcontrib><creatorcontrib>Hop, Cornelis E. C. A.</creatorcontrib><creatorcontrib>Wright, Matthew</creatorcontrib><creatorcontrib>Chen, Yuan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Pharmaceutical research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mao, Jialin</au><au>Fan, Peter</au><au>Wong, Susan</au><au>Wang, Jianshuang</au><au>Ismaili, Moulay Hicham Alaoui</au><au>Dean, Brian</au><au>Hop, Cornelis E. C. A.</au><au>Wright, Matthew</au><au>Chen, Yuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strategy for CYP3A Induction Risk Assessment from Preclinical Signal to Human: a Case Example of a Late-Stage Discovery Compound</atitle><jtitle>Pharmaceutical research</jtitle><stitle>Pharm Res</stitle><addtitle>Pharm Res</addtitle><date>2017-11-01</date><risdate>2017</risdate><volume>34</volume><issue>11</issue><spage>2403</spage><epage>2414</epage><pages>2403-2414</pages><issn>0724-8741</issn><eissn>1573-904X</eissn><abstract>Purpose The exposure of G2917 decreased by four-fold at oral doses of 100 mg/kg twice daily for seven days in cynomolgus monkeys. Additional investigative work was conducted to understand: (1) the causes for the significant reduction in G2917 exposure in monkeys; (2) the extrapolation of in vitro induction data to in vivo findings in monkeys, and (3) the relevance of this pre-clinical finding to humans at the projected human efficacious dose. Methods Pharmacokinetic and induction potency ( in vitro and in vivo ) of G2917 in monkeys, and the in vitro human induction potency were studied. The hepatic CYP3A biomarkers 4β-hydroxycholesterol (4β-HC) and 6β-hydroxycortisol/cortisol ratio (6β-OHC/C) were monitored in in vivo studies. The static mechanistic model was used to quantitatively understand the in vitro - in vivo extrapolation (IVIVE) on the magnitude of induction retrospectively. Physiologically based pharmacokinetic (PBPK) modeling was used to predict the human pharmacokinetics and induction-based drug-drug interactions (DDI). Results All in vitro and in vivo data indicate that the significant reduction in exposure of G2917 in monkeys is caused by auto-induction of CYP3A. The mechanistic understanding of IVIVE of G2917 induction in monkey provides higher confidence in the induction risk prediction in human using the PBPK modeling. PBPK model analysis predicted minimum auto-induction and DDI liability in humans at the predicted efficacious dose. Conclusions The learning of this example provided a strategy to address the human CYP3A induction risk prospectively when there is an auto-induction finding in preclinical toxicology study.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>28815392</pmid><doi>10.1007/s11095-017-2246-8</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-9283-4819</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0724-8741
ispartof Pharmaceutical research, 2017-11, Vol.34 (11), p.2403-2414
issn 0724-8741
1573-904X
language eng
recordid cdi_proquest_journals_1951508864
source MEDLINE; SpringerLink Journals
subjects Administration, Oral
Animals
Biochemistry
Bioindicators
Biomedical and Life Sciences
Biomedical Engineering and Bioengineering
Biomedicine
Computer Simulation
Cortisol
Cytochrome P-450 CYP3A - biosynthesis
Drug Discovery
Drug dosages
Drug Interactions
Enzyme Induction
Exposure
Extrapolation
Humans
Hydrocortisone - analogs & derivatives
Hydrocortisone - metabolism
Hydroxycholesterols - metabolism
Liability
Liver
Liver - drug effects
Liver - metabolism
Macaca fascicularis
Medical Law
Medical research
Medicine, Experimental
Midazolam - pharmacology
Models, Biological
Monkeys
Pharmacokinetics
Pharmacology/Toxicology
Pharmacy
Research Paper
Rifampin - pharmacology
Risk assessment
RNA, Messenger - biosynthesis
Toxicology
title Strategy for CYP3A Induction Risk Assessment from Preclinical Signal to Human: a Case Example of a Late-Stage Discovery Compound
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T12%3A47%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strategy%20for%20CYP3A%20Induction%20Risk%20Assessment%20from%20Preclinical%20Signal%20to%20Human:%20a%20Case%20Example%20of%20a%20Late-Stage%20Discovery%20Compound&rft.jtitle=Pharmaceutical%20research&rft.au=Mao,%20Jialin&rft.date=2017-11-01&rft.volume=34&rft.issue=11&rft.spage=2403&rft.epage=2414&rft.pages=2403-2414&rft.issn=0724-8741&rft.eissn=1573-904X&rft_id=info:doi/10.1007/s11095-017-2246-8&rft_dat=%3Cgale_proqu%3EA747438826%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1951508864&rft_id=info:pmid/28815392&rft_galeid=A747438826&rfr_iscdi=true