Incorporating Transgenerational Epigenetic Inheritance into Ecological Risk Assessment Frameworks

Chronic exposure to environmental contaminants can induce heritable “transgenerational” modifications to organisms, potentially affecting future ecosystem health and functionality. Incorporating transgenerational epigenetic heritability into risk assessment procedures has been previously suggested....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2017-09, Vol.51 (17), p.9433-9445
Hauptverfasser: Shaw, Jennifer L.A., Judy, Jonathan D., Kumar, Anupama, Bertsch, Paul, Wang, Ming-Bo, Kirby, Jason K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9445
container_issue 17
container_start_page 9433
container_title Environmental science & technology
container_volume 51
creator Shaw, Jennifer L.A.
Judy, Jonathan D.
Kumar, Anupama
Bertsch, Paul
Wang, Ming-Bo
Kirby, Jason K.
description Chronic exposure to environmental contaminants can induce heritable “transgenerational” modifications to organisms, potentially affecting future ecosystem health and functionality. Incorporating transgenerational epigenetic heritability into risk assessment procedures has been previously suggested. However, a critical review of existing literature yielded numerous studies claiming transgenerational impacts, with little compelling evidence. Therefore, contaminant-induced epigenetic inheritance may be less common than is reported in the literature. We identified a need for multigeneration epigenetic studies that extend beyond what could be deemed “direct exposure” to F1 and F2 gametes and also include subsequent multiple nonexposed generations to adequately evaluate transgenerational recovery times. Also, increased experimental replication is required to account for the highly variable nature of epigenetic responses and apparent irreproducibility of current studies. Further, epigenetic end points need to be correlated with observable detrimental organism changes before a need for risk management can be properly determined. We suggest that epigenetic-based contaminant studies include concentrations lower than current “EC10–20” or “Lowest Observable Effect Concentrations” for the organism’s most sensitive phenotypic end point, as higher concentrations are likely already regulated. Finally, we propose a regulatory framework and optimal experimental design that enables transgenerational epigenetic effects to be assessed and incorporated into conventional ecotoxicological testing.
doi_str_mv 10.1021/acs.est.7b01094
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1951132593</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1951132593</sourcerecordid><originalsourceid>FETCH-LOGICAL-a361t-4e08e7519a85c3f98d9eed79c41551228a935c6224f0f855fbee0e62300b6ad23</originalsourceid><addsrcrecordid>eNp1kM9LwzAUx4Mobk7P3qTgUbrlR9MmxzE2HQwEmeCtpOnrzLYmNekQ_3tbNvXk6fHg8_0-3gehW4LHBFMyUTqMIbTjrMAEy-QMDQmnOOaCk3M0xJiwWLL0bYCuQthijCnD4hINqMgSLmQ2RGpptfON86o1dhOtvbJhAxb63Vm1j-aN6ffW6Ghp38GbVlkNkbGti-ba7d3G6A57MWEXTUOAEGqwbbTwqoZP53fhGl1Uah_g5jRH6HUxX8-e4tXz43I2XcWKpaSNE8ACMk6kElyzSopSApSZ1AnhnFAqlGRcp5QmFa4E51UBgCHtHsJFqkrKRuj-2Nt493HopORbd_DdCyEnkhPCKJesoyZHSnsXgocqb7yplf_KCc57pXmnNO_TJ6Vd4u7UeyhqKH_5H4cd8HAE-uTfzX_qvgGcLoMK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1951132593</pqid></control><display><type>article</type><title>Incorporating Transgenerational Epigenetic Inheritance into Ecological Risk Assessment Frameworks</title><source>MEDLINE</source><source>ACS Publications</source><creator>Shaw, Jennifer L.A. ; Judy, Jonathan D. ; Kumar, Anupama ; Bertsch, Paul ; Wang, Ming-Bo ; Kirby, Jason K.</creator><creatorcontrib>Shaw, Jennifer L.A. ; Judy, Jonathan D. ; Kumar, Anupama ; Bertsch, Paul ; Wang, Ming-Bo ; Kirby, Jason K.</creatorcontrib><description>Chronic exposure to environmental contaminants can induce heritable “transgenerational” modifications to organisms, potentially affecting future ecosystem health and functionality. Incorporating transgenerational epigenetic heritability into risk assessment procedures has been previously suggested. However, a critical review of existing literature yielded numerous studies claiming transgenerational impacts, with little compelling evidence. Therefore, contaminant-induced epigenetic inheritance may be less common than is reported in the literature. We identified a need for multigeneration epigenetic studies that extend beyond what could be deemed “direct exposure” to F1 and F2 gametes and also include subsequent multiple nonexposed generations to adequately evaluate transgenerational recovery times. Also, increased experimental replication is required to account for the highly variable nature of epigenetic responses and apparent irreproducibility of current studies. Further, epigenetic end points need to be correlated with observable detrimental organism changes before a need for risk management can be properly determined. We suggest that epigenetic-based contaminant studies include concentrations lower than current “EC10–20” or “Lowest Observable Effect Concentrations” for the organism’s most sensitive phenotypic end point, as higher concentrations are likely already regulated. Finally, we propose a regulatory framework and optimal experimental design that enables transgenerational epigenetic effects to be assessed and incorporated into conventional ecotoxicological testing.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.7b01094</identifier><identifier>PMID: 28745897</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Animals ; Chronic exposure ; Contaminants ; Ecological risk assessment ; Ecology ; Ecosystems ; Environment ; Environmental assessment ; Environmental changes ; Environmental impact ; Epigenesis, Genetic ; Epigenetics ; Experimental design ; Gametes ; Heredity ; Heritability ; Humans ; Inheritances ; Literature reviews ; Pollution ; Risk Assessment ; Risk management ; Toxicity testing</subject><ispartof>Environmental science &amp; technology, 2017-09, Vol.51 (17), p.9433-9445</ispartof><rights>Copyright © 2017 American Chemical Society</rights><rights>Copyright American Chemical Society Sep 5, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a361t-4e08e7519a85c3f98d9eed79c41551228a935c6224f0f855fbee0e62300b6ad23</citedby><cites>FETCH-LOGICAL-a361t-4e08e7519a85c3f98d9eed79c41551228a935c6224f0f855fbee0e62300b6ad23</cites><orcidid>0000-0002-4220-9748</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.est.7b01094$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.est.7b01094$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,778,782,2754,27059,27907,27908,56721,56771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28745897$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shaw, Jennifer L.A.</creatorcontrib><creatorcontrib>Judy, Jonathan D.</creatorcontrib><creatorcontrib>Kumar, Anupama</creatorcontrib><creatorcontrib>Bertsch, Paul</creatorcontrib><creatorcontrib>Wang, Ming-Bo</creatorcontrib><creatorcontrib>Kirby, Jason K.</creatorcontrib><title>Incorporating Transgenerational Epigenetic Inheritance into Ecological Risk Assessment Frameworks</title><title>Environmental science &amp; technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Chronic exposure to environmental contaminants can induce heritable “transgenerational” modifications to organisms, potentially affecting future ecosystem health and functionality. Incorporating transgenerational epigenetic heritability into risk assessment procedures has been previously suggested. However, a critical review of existing literature yielded numerous studies claiming transgenerational impacts, with little compelling evidence. Therefore, contaminant-induced epigenetic inheritance may be less common than is reported in the literature. We identified a need for multigeneration epigenetic studies that extend beyond what could be deemed “direct exposure” to F1 and F2 gametes and also include subsequent multiple nonexposed generations to adequately evaluate transgenerational recovery times. Also, increased experimental replication is required to account for the highly variable nature of epigenetic responses and apparent irreproducibility of current studies. Further, epigenetic end points need to be correlated with observable detrimental organism changes before a need for risk management can be properly determined. We suggest that epigenetic-based contaminant studies include concentrations lower than current “EC10–20” or “Lowest Observable Effect Concentrations” for the organism’s most sensitive phenotypic end point, as higher concentrations are likely already regulated. Finally, we propose a regulatory framework and optimal experimental design that enables transgenerational epigenetic effects to be assessed and incorporated into conventional ecotoxicological testing.</description><subject>Animals</subject><subject>Chronic exposure</subject><subject>Contaminants</subject><subject>Ecological risk assessment</subject><subject>Ecology</subject><subject>Ecosystems</subject><subject>Environment</subject><subject>Environmental assessment</subject><subject>Environmental changes</subject><subject>Environmental impact</subject><subject>Epigenesis, Genetic</subject><subject>Epigenetics</subject><subject>Experimental design</subject><subject>Gametes</subject><subject>Heredity</subject><subject>Heritability</subject><subject>Humans</subject><subject>Inheritances</subject><subject>Literature reviews</subject><subject>Pollution</subject><subject>Risk Assessment</subject><subject>Risk management</subject><subject>Toxicity testing</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kM9LwzAUx4Mobk7P3qTgUbrlR9MmxzE2HQwEmeCtpOnrzLYmNekQ_3tbNvXk6fHg8_0-3gehW4LHBFMyUTqMIbTjrMAEy-QMDQmnOOaCk3M0xJiwWLL0bYCuQthijCnD4hINqMgSLmQ2RGpptfON86o1dhOtvbJhAxb63Vm1j-aN6ffW6Ghp38GbVlkNkbGti-ba7d3G6A57MWEXTUOAEGqwbbTwqoZP53fhGl1Uah_g5jRH6HUxX8-e4tXz43I2XcWKpaSNE8ACMk6kElyzSopSApSZ1AnhnFAqlGRcp5QmFa4E51UBgCHtHsJFqkrKRuj-2Nt493HopORbd_DdCyEnkhPCKJesoyZHSnsXgocqb7yplf_KCc57pXmnNO_TJ6Vd4u7UeyhqKH_5H4cd8HAE-uTfzX_qvgGcLoMK</recordid><startdate>20170905</startdate><enddate>20170905</enddate><creator>Shaw, Jennifer L.A.</creator><creator>Judy, Jonathan D.</creator><creator>Kumar, Anupama</creator><creator>Bertsch, Paul</creator><creator>Wang, Ming-Bo</creator><creator>Kirby, Jason K.</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-4220-9748</orcidid></search><sort><creationdate>20170905</creationdate><title>Incorporating Transgenerational Epigenetic Inheritance into Ecological Risk Assessment Frameworks</title><author>Shaw, Jennifer L.A. ; Judy, Jonathan D. ; Kumar, Anupama ; Bertsch, Paul ; Wang, Ming-Bo ; Kirby, Jason K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a361t-4e08e7519a85c3f98d9eed79c41551228a935c6224f0f855fbee0e62300b6ad23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>Chronic exposure</topic><topic>Contaminants</topic><topic>Ecological risk assessment</topic><topic>Ecology</topic><topic>Ecosystems</topic><topic>Environment</topic><topic>Environmental assessment</topic><topic>Environmental changes</topic><topic>Environmental impact</topic><topic>Epigenesis, Genetic</topic><topic>Epigenetics</topic><topic>Experimental design</topic><topic>Gametes</topic><topic>Heredity</topic><topic>Heritability</topic><topic>Humans</topic><topic>Inheritances</topic><topic>Literature reviews</topic><topic>Pollution</topic><topic>Risk Assessment</topic><topic>Risk management</topic><topic>Toxicity testing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shaw, Jennifer L.A.</creatorcontrib><creatorcontrib>Judy, Jonathan D.</creatorcontrib><creatorcontrib>Kumar, Anupama</creatorcontrib><creatorcontrib>Bertsch, Paul</creatorcontrib><creatorcontrib>Wang, Ming-Bo</creatorcontrib><creatorcontrib>Kirby, Jason K.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Environmental science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shaw, Jennifer L.A.</au><au>Judy, Jonathan D.</au><au>Kumar, Anupama</au><au>Bertsch, Paul</au><au>Wang, Ming-Bo</au><au>Kirby, Jason K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Incorporating Transgenerational Epigenetic Inheritance into Ecological Risk Assessment Frameworks</atitle><jtitle>Environmental science &amp; technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2017-09-05</date><risdate>2017</risdate><volume>51</volume><issue>17</issue><spage>9433</spage><epage>9445</epage><pages>9433-9445</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><abstract>Chronic exposure to environmental contaminants can induce heritable “transgenerational” modifications to organisms, potentially affecting future ecosystem health and functionality. Incorporating transgenerational epigenetic heritability into risk assessment procedures has been previously suggested. However, a critical review of existing literature yielded numerous studies claiming transgenerational impacts, with little compelling evidence. Therefore, contaminant-induced epigenetic inheritance may be less common than is reported in the literature. We identified a need for multigeneration epigenetic studies that extend beyond what could be deemed “direct exposure” to F1 and F2 gametes and also include subsequent multiple nonexposed generations to adequately evaluate transgenerational recovery times. Also, increased experimental replication is required to account for the highly variable nature of epigenetic responses and apparent irreproducibility of current studies. Further, epigenetic end points need to be correlated with observable detrimental organism changes before a need for risk management can be properly determined. We suggest that epigenetic-based contaminant studies include concentrations lower than current “EC10–20” or “Lowest Observable Effect Concentrations” for the organism’s most sensitive phenotypic end point, as higher concentrations are likely already regulated. Finally, we propose a regulatory framework and optimal experimental design that enables transgenerational epigenetic effects to be assessed and incorporated into conventional ecotoxicological testing.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>28745897</pmid><doi>10.1021/acs.est.7b01094</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-4220-9748</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0013-936X
ispartof Environmental science & technology, 2017-09, Vol.51 (17), p.9433-9445
issn 0013-936X
1520-5851
language eng
recordid cdi_proquest_journals_1951132593
source MEDLINE; ACS Publications
subjects Animals
Chronic exposure
Contaminants
Ecological risk assessment
Ecology
Ecosystems
Environment
Environmental assessment
Environmental changes
Environmental impact
Epigenesis, Genetic
Epigenetics
Experimental design
Gametes
Heredity
Heritability
Humans
Inheritances
Literature reviews
Pollution
Risk Assessment
Risk management
Toxicity testing
title Incorporating Transgenerational Epigenetic Inheritance into Ecological Risk Assessment Frameworks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T23%3A37%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Incorporating%20Transgenerational%20Epigenetic%20Inheritance%20into%20Ecological%20Risk%20Assessment%20Frameworks&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Shaw,%20Jennifer%20L.A.&rft.date=2017-09-05&rft.volume=51&rft.issue=17&rft.spage=9433&rft.epage=9445&rft.pages=9433-9445&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.7b01094&rft_dat=%3Cproquest_cross%3E1951132593%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1951132593&rft_id=info:pmid/28745897&rfr_iscdi=true