Incorporating Transgenerational Epigenetic Inheritance into Ecological Risk Assessment Frameworks
Chronic exposure to environmental contaminants can induce heritable “transgenerational” modifications to organisms, potentially affecting future ecosystem health and functionality. Incorporating transgenerational epigenetic heritability into risk assessment procedures has been previously suggested....
Gespeichert in:
Veröffentlicht in: | Environmental science & technology 2017-09, Vol.51 (17), p.9433-9445 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9445 |
---|---|
container_issue | 17 |
container_start_page | 9433 |
container_title | Environmental science & technology |
container_volume | 51 |
creator | Shaw, Jennifer L.A. Judy, Jonathan D. Kumar, Anupama Bertsch, Paul Wang, Ming-Bo Kirby, Jason K. |
description | Chronic exposure to environmental contaminants can induce heritable “transgenerational” modifications to organisms, potentially affecting future ecosystem health and functionality. Incorporating transgenerational epigenetic heritability into risk assessment procedures has been previously suggested. However, a critical review of existing literature yielded numerous studies claiming transgenerational impacts, with little compelling evidence. Therefore, contaminant-induced epigenetic inheritance may be less common than is reported in the literature. We identified a need for multigeneration epigenetic studies that extend beyond what could be deemed “direct exposure” to F1 and F2 gametes and also include subsequent multiple nonexposed generations to adequately evaluate transgenerational recovery times. Also, increased experimental replication is required to account for the highly variable nature of epigenetic responses and apparent irreproducibility of current studies. Further, epigenetic end points need to be correlated with observable detrimental organism changes before a need for risk management can be properly determined. We suggest that epigenetic-based contaminant studies include concentrations lower than current “EC10–20” or “Lowest Observable Effect Concentrations” for the organism’s most sensitive phenotypic end point, as higher concentrations are likely already regulated. Finally, we propose a regulatory framework and optimal experimental design that enables transgenerational epigenetic effects to be assessed and incorporated into conventional ecotoxicological testing. |
doi_str_mv | 10.1021/acs.est.7b01094 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1951132593</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1951132593</sourcerecordid><originalsourceid>FETCH-LOGICAL-a361t-4e08e7519a85c3f98d9eed79c41551228a935c6224f0f855fbee0e62300b6ad23</originalsourceid><addsrcrecordid>eNp1kM9LwzAUx4Mobk7P3qTgUbrlR9MmxzE2HQwEmeCtpOnrzLYmNekQ_3tbNvXk6fHg8_0-3gehW4LHBFMyUTqMIbTjrMAEy-QMDQmnOOaCk3M0xJiwWLL0bYCuQthijCnD4hINqMgSLmQ2RGpptfON86o1dhOtvbJhAxb63Vm1j-aN6ffW6Ghp38GbVlkNkbGti-ba7d3G6A57MWEXTUOAEGqwbbTwqoZP53fhGl1Uah_g5jRH6HUxX8-e4tXz43I2XcWKpaSNE8ACMk6kElyzSopSApSZ1AnhnFAqlGRcp5QmFa4E51UBgCHtHsJFqkrKRuj-2Nt493HopORbd_DdCyEnkhPCKJesoyZHSnsXgocqb7yplf_KCc57pXmnNO_TJ6Vd4u7UeyhqKH_5H4cd8HAE-uTfzX_qvgGcLoMK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1951132593</pqid></control><display><type>article</type><title>Incorporating Transgenerational Epigenetic Inheritance into Ecological Risk Assessment Frameworks</title><source>MEDLINE</source><source>ACS Publications</source><creator>Shaw, Jennifer L.A. ; Judy, Jonathan D. ; Kumar, Anupama ; Bertsch, Paul ; Wang, Ming-Bo ; Kirby, Jason K.</creator><creatorcontrib>Shaw, Jennifer L.A. ; Judy, Jonathan D. ; Kumar, Anupama ; Bertsch, Paul ; Wang, Ming-Bo ; Kirby, Jason K.</creatorcontrib><description>Chronic exposure to environmental contaminants can induce heritable “transgenerational” modifications to organisms, potentially affecting future ecosystem health and functionality. Incorporating transgenerational epigenetic heritability into risk assessment procedures has been previously suggested. However, a critical review of existing literature yielded numerous studies claiming transgenerational impacts, with little compelling evidence. Therefore, contaminant-induced epigenetic inheritance may be less common than is reported in the literature. We identified a need for multigeneration epigenetic studies that extend beyond what could be deemed “direct exposure” to F1 and F2 gametes and also include subsequent multiple nonexposed generations to adequately evaluate transgenerational recovery times. Also, increased experimental replication is required to account for the highly variable nature of epigenetic responses and apparent irreproducibility of current studies. Further, epigenetic end points need to be correlated with observable detrimental organism changes before a need for risk management can be properly determined. We suggest that epigenetic-based contaminant studies include concentrations lower than current “EC10–20” or “Lowest Observable Effect Concentrations” for the organism’s most sensitive phenotypic end point, as higher concentrations are likely already regulated. Finally, we propose a regulatory framework and optimal experimental design that enables transgenerational epigenetic effects to be assessed and incorporated into conventional ecotoxicological testing.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.7b01094</identifier><identifier>PMID: 28745897</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Animals ; Chronic exposure ; Contaminants ; Ecological risk assessment ; Ecology ; Ecosystems ; Environment ; Environmental assessment ; Environmental changes ; Environmental impact ; Epigenesis, Genetic ; Epigenetics ; Experimental design ; Gametes ; Heredity ; Heritability ; Humans ; Inheritances ; Literature reviews ; Pollution ; Risk Assessment ; Risk management ; Toxicity testing</subject><ispartof>Environmental science & technology, 2017-09, Vol.51 (17), p.9433-9445</ispartof><rights>Copyright © 2017 American Chemical Society</rights><rights>Copyright American Chemical Society Sep 5, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a361t-4e08e7519a85c3f98d9eed79c41551228a935c6224f0f855fbee0e62300b6ad23</citedby><cites>FETCH-LOGICAL-a361t-4e08e7519a85c3f98d9eed79c41551228a935c6224f0f855fbee0e62300b6ad23</cites><orcidid>0000-0002-4220-9748</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.est.7b01094$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.est.7b01094$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,778,782,2754,27059,27907,27908,56721,56771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28745897$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shaw, Jennifer L.A.</creatorcontrib><creatorcontrib>Judy, Jonathan D.</creatorcontrib><creatorcontrib>Kumar, Anupama</creatorcontrib><creatorcontrib>Bertsch, Paul</creatorcontrib><creatorcontrib>Wang, Ming-Bo</creatorcontrib><creatorcontrib>Kirby, Jason K.</creatorcontrib><title>Incorporating Transgenerational Epigenetic Inheritance into Ecological Risk Assessment Frameworks</title><title>Environmental science & technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Chronic exposure to environmental contaminants can induce heritable “transgenerational” modifications to organisms, potentially affecting future ecosystem health and functionality. Incorporating transgenerational epigenetic heritability into risk assessment procedures has been previously suggested. However, a critical review of existing literature yielded numerous studies claiming transgenerational impacts, with little compelling evidence. Therefore, contaminant-induced epigenetic inheritance may be less common than is reported in the literature. We identified a need for multigeneration epigenetic studies that extend beyond what could be deemed “direct exposure” to F1 and F2 gametes and also include subsequent multiple nonexposed generations to adequately evaluate transgenerational recovery times. Also, increased experimental replication is required to account for the highly variable nature of epigenetic responses and apparent irreproducibility of current studies. Further, epigenetic end points need to be correlated with observable detrimental organism changes before a need for risk management can be properly determined. We suggest that epigenetic-based contaminant studies include concentrations lower than current “EC10–20” or “Lowest Observable Effect Concentrations” for the organism’s most sensitive phenotypic end point, as higher concentrations are likely already regulated. Finally, we propose a regulatory framework and optimal experimental design that enables transgenerational epigenetic effects to be assessed and incorporated into conventional ecotoxicological testing.</description><subject>Animals</subject><subject>Chronic exposure</subject><subject>Contaminants</subject><subject>Ecological risk assessment</subject><subject>Ecology</subject><subject>Ecosystems</subject><subject>Environment</subject><subject>Environmental assessment</subject><subject>Environmental changes</subject><subject>Environmental impact</subject><subject>Epigenesis, Genetic</subject><subject>Epigenetics</subject><subject>Experimental design</subject><subject>Gametes</subject><subject>Heredity</subject><subject>Heritability</subject><subject>Humans</subject><subject>Inheritances</subject><subject>Literature reviews</subject><subject>Pollution</subject><subject>Risk Assessment</subject><subject>Risk management</subject><subject>Toxicity testing</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kM9LwzAUx4Mobk7P3qTgUbrlR9MmxzE2HQwEmeCtpOnrzLYmNekQ_3tbNvXk6fHg8_0-3gehW4LHBFMyUTqMIbTjrMAEy-QMDQmnOOaCk3M0xJiwWLL0bYCuQthijCnD4hINqMgSLmQ2RGpptfON86o1dhOtvbJhAxb63Vm1j-aN6ffW6Ghp38GbVlkNkbGti-ba7d3G6A57MWEXTUOAEGqwbbTwqoZP53fhGl1Uah_g5jRH6HUxX8-e4tXz43I2XcWKpaSNE8ACMk6kElyzSopSApSZ1AnhnFAqlGRcp5QmFa4E51UBgCHtHsJFqkrKRuj-2Nt493HopORbd_DdCyEnkhPCKJesoyZHSnsXgocqb7yplf_KCc57pXmnNO_TJ6Vd4u7UeyhqKH_5H4cd8HAE-uTfzX_qvgGcLoMK</recordid><startdate>20170905</startdate><enddate>20170905</enddate><creator>Shaw, Jennifer L.A.</creator><creator>Judy, Jonathan D.</creator><creator>Kumar, Anupama</creator><creator>Bertsch, Paul</creator><creator>Wang, Ming-Bo</creator><creator>Kirby, Jason K.</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-4220-9748</orcidid></search><sort><creationdate>20170905</creationdate><title>Incorporating Transgenerational Epigenetic Inheritance into Ecological Risk Assessment Frameworks</title><author>Shaw, Jennifer L.A. ; Judy, Jonathan D. ; Kumar, Anupama ; Bertsch, Paul ; Wang, Ming-Bo ; Kirby, Jason K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a361t-4e08e7519a85c3f98d9eed79c41551228a935c6224f0f855fbee0e62300b6ad23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>Chronic exposure</topic><topic>Contaminants</topic><topic>Ecological risk assessment</topic><topic>Ecology</topic><topic>Ecosystems</topic><topic>Environment</topic><topic>Environmental assessment</topic><topic>Environmental changes</topic><topic>Environmental impact</topic><topic>Epigenesis, Genetic</topic><topic>Epigenetics</topic><topic>Experimental design</topic><topic>Gametes</topic><topic>Heredity</topic><topic>Heritability</topic><topic>Humans</topic><topic>Inheritances</topic><topic>Literature reviews</topic><topic>Pollution</topic><topic>Risk Assessment</topic><topic>Risk management</topic><topic>Toxicity testing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shaw, Jennifer L.A.</creatorcontrib><creatorcontrib>Judy, Jonathan D.</creatorcontrib><creatorcontrib>Kumar, Anupama</creatorcontrib><creatorcontrib>Bertsch, Paul</creatorcontrib><creatorcontrib>Wang, Ming-Bo</creatorcontrib><creatorcontrib>Kirby, Jason K.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Environmental science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shaw, Jennifer L.A.</au><au>Judy, Jonathan D.</au><au>Kumar, Anupama</au><au>Bertsch, Paul</au><au>Wang, Ming-Bo</au><au>Kirby, Jason K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Incorporating Transgenerational Epigenetic Inheritance into Ecological Risk Assessment Frameworks</atitle><jtitle>Environmental science & technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2017-09-05</date><risdate>2017</risdate><volume>51</volume><issue>17</issue><spage>9433</spage><epage>9445</epage><pages>9433-9445</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><abstract>Chronic exposure to environmental contaminants can induce heritable “transgenerational” modifications to organisms, potentially affecting future ecosystem health and functionality. Incorporating transgenerational epigenetic heritability into risk assessment procedures has been previously suggested. However, a critical review of existing literature yielded numerous studies claiming transgenerational impacts, with little compelling evidence. Therefore, contaminant-induced epigenetic inheritance may be less common than is reported in the literature. We identified a need for multigeneration epigenetic studies that extend beyond what could be deemed “direct exposure” to F1 and F2 gametes and also include subsequent multiple nonexposed generations to adequately evaluate transgenerational recovery times. Also, increased experimental replication is required to account for the highly variable nature of epigenetic responses and apparent irreproducibility of current studies. Further, epigenetic end points need to be correlated with observable detrimental organism changes before a need for risk management can be properly determined. We suggest that epigenetic-based contaminant studies include concentrations lower than current “EC10–20” or “Lowest Observable Effect Concentrations” for the organism’s most sensitive phenotypic end point, as higher concentrations are likely already regulated. Finally, we propose a regulatory framework and optimal experimental design that enables transgenerational epigenetic effects to be assessed and incorporated into conventional ecotoxicological testing.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>28745897</pmid><doi>10.1021/acs.est.7b01094</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-4220-9748</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-936X |
ispartof | Environmental science & technology, 2017-09, Vol.51 (17), p.9433-9445 |
issn | 0013-936X 1520-5851 |
language | eng |
recordid | cdi_proquest_journals_1951132593 |
source | MEDLINE; ACS Publications |
subjects | Animals Chronic exposure Contaminants Ecological risk assessment Ecology Ecosystems Environment Environmental assessment Environmental changes Environmental impact Epigenesis, Genetic Epigenetics Experimental design Gametes Heredity Heritability Humans Inheritances Literature reviews Pollution Risk Assessment Risk management Toxicity testing |
title | Incorporating Transgenerational Epigenetic Inheritance into Ecological Risk Assessment Frameworks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T23%3A37%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Incorporating%20Transgenerational%20Epigenetic%20Inheritance%20into%20Ecological%20Risk%20Assessment%20Frameworks&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Shaw,%20Jennifer%20L.A.&rft.date=2017-09-05&rft.volume=51&rft.issue=17&rft.spage=9433&rft.epage=9445&rft.pages=9433-9445&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.7b01094&rft_dat=%3Cproquest_cross%3E1951132593%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1951132593&rft_id=info:pmid/28745897&rfr_iscdi=true |