Influence of static alternating field demagnetization on anisotropy of magnetic susceptibility: Experiments and implications
Anisotropy of magnetic susceptibility (AMS) indicates the preferred orientation of a rock's constituent minerals. However, other factors can influence the AMS, e.g., domain wall pinning or domain alignment in ferromagnetic minerals. Therefore, it is controversial whether samples should be alter...
Gespeichert in:
Veröffentlicht in: | Geochemistry, geophysics, geosystems : G3 geophysics, geosystems : G3, 2017-09, Vol.18 (9), p.3292-3308 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Anisotropy of magnetic susceptibility (AMS) indicates the preferred orientation of a rock's constituent minerals. However, other factors can influence the AMS, e.g., domain wall pinning or domain alignment in ferromagnetic minerals. Therefore, it is controversial whether samples should be alternating field (AF) demagnetized prior to AMS characterization. This may remove the influence of natural remanent magnetization (NRM) or domain wall pinning on AMS; however, it may also result in field‐induced anisotropy. This study investigates the influence of stepwise AF and low‐temperature demagnetization on mean susceptibility, principal susceptibility directions, AMS degree and shape for sedimentary, metamorphic, and igneous rocks. Alternating fields up to 200 mT were applied along the sample x, y, and z axes, rotating the order for each step, to characterize the relationship between AMS principal directions and the last AF orientation. The changes in anisotropy, defined by the mean deviatoric susceptibility of the difference tensors, are between |
---|---|
ISSN: | 1525-2027 1525-2027 |
DOI: | 10.1002/2017GC007073 |